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Abstract
Observers have broad applications in power systems, whereas observer mod-
els are hard to obtain when the system is unknown. This article considers
the observer design problems for unknown noisy linear time-invariant systems
based on biased dynamics estimations. Unlike the unbiased methods, biased
methods have stronger generalization ability, which benefits obtaining stable
estimations for noisy systems. However, the biased estimation’s influence on
observer design still needs to be investigated. To analyze the influence, we exploit
the impact of estimation bias-variance trade-off to observer design. Specifically,
we propose a support vector regression (SVR) based estimator to provide biased
estimations for the system identification of unknown linear systems. The sam-
ple complexity results of SVR with bias-variance trade-offs are analyzed and
used for observer design and performance analysis. Then, a stable observer
gain design algorithm is developed based on biased estimation. The observa-
tion performance is evaluated by the mean square observation error, which is
shown to be adjustable by tuning the trade-off between bias and variance, thus
achieving higher scalability than the unbiased methods. Finally, observing per-
formance analysis demonstrates the influence of the bias-variance trade-off for
the observer. Extensive simulation validations are conducted to verify the com-
puted estimation error and performance optimality with different bias-variance
trade-offs and noise settings.
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1 INTRODUCTION

Observers have broad applications in power systems, such as transient stabilization and fault detection.1,2 The fundamen-
tal knowledge for the design of state observers is the parameters of system dynamics. It is difficult to design an observer
when the parameters are unknown. An efficient way to obtain the dynamics is parameter estimation.3,4 Estimation pro-
cedures use input and output data to estimate system parameters, also called data-driven modeling methods. Several
methods have been proposed in the past decades. System identification methods such as prediction error, instrumental

ABBREVIATIONS: LTI, linear time-invariant; MIMO, multiple-input and multiple-output; OLS, ordinary least square; SLS, system-level
synthesis; SVR, support vector regression.
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2 DING et al.

variable, and subspace model identification methods are proposed to estimate the state-space model directly.5-8 Another
technique to estimate the system dynamics is the adaptive observer design, which provides estimation error bound and
shows promising results under the assumption that the system state matrix is in an observer canonical form.9-11

With the development of artificial intelligence and machine learning techniques, artificial neural networks-based
modeling12,13 and support vector machines-based modeling14,15 have been proposed. Recently, thanks to the abilities of
self-learning and adaptability, the adaptive dynamic programming-based methods based on reinforcement learning have
demonstrated the capability to find the optimal control policy and practically solve the Bellman equation.16-18 These meth-
ods can obtain near-accurate estimation to some extent, in the sense of asymptotic convergence,5,19 minimum risks.20,21

Also, some work obtained the estimation error bounds under strict assumptions, such as the state matrix is observable
canonical form and the number of samples for identification is infinite.9-11 However, when the number of sample is finite
and state matrix is not an observable canonical form, the aforementioned studies cannot provide estimation error bounds.

More recently, it has been proposed to use finite samplings instead.22-24 These methods are more practical since the
infinite samples are hard to obtain. They also do not rely on an observable canonical form. Recent works in the control
community discussed the nonasymptotic analysis and obtained a bound of bias for the dynamics estimation problem
under finite samples.23-31 Based on the ordinary least square (OLS) estimator, these works considered the Gaussian process
estimation of a linear time-invariant (LTI) system. The principal tool used in the nonasymptotic regression bound analysis
is concentration inequalities. The convergence rate of regression error is (1∕

√
N), where N is the number of samples

(sample length) used for regression. A line of recent works has obtained similar results for both stable and unstable
systems by different data collection procedures. Based on these results, the robust controller design problem is further
considered, which explores the relationships among data, estimation error, and controller performance.22-24 Specifically,
they connected the sub-optimal control cost with the regression error based on the parameterization methods such as
system-level synthesis (SLS),32 and input-output parameterization.33,34 These works showed that it obtains tighter error
bounds and better control performance with more data used for OLS regression. These methods obtained error bounds
based on the sample length without considering the impact of the variance of the estimation error. An ideal estimator
should be unbiased and have low variance. Since a larger estimation variance would cause more uncertainty in regression
results, the variance greatly impacts stable observer design.

Moreover, machine learning methods such as neural networks35 and support vector machines36 can provide biased
but low-variance regression results for a noisy system, Furthermore, they showed strong generalization abilities, and
stability.37 This characteristic makes machine learning methods popular in practice. The bias of the estimation fluctuates
moderately. The fluctuation of bias causes the shift of the error interval. Then, it is difficult to design a robust observer
when the error interval shifts. Besides, trading off the bias and variance provides flexible error bounds, which could benefit
the stable observer design.

Inspired by the previous studies, this article aims to formulate and analyze the sample complexity and observer design
based on the biased dynamics estimation and explore the impact of the biased results on the observer design. However,
designing a stable observer gain over an unknown system with biased estimators takes work. The challenges are: (1) since
there is uncertainty in biased estimation with the bias-variance trade-off, it is challenging to design a stable and robust
observer gain; (2) the relationship between the designed observer performance and the biased estimation is unknown;
(3) how to apply an estimation method with bias-variance trade-off to the observer design needs to be determined. To
deal with these challenges, we first formulate the uncertainty in estimation based on system input and output data. Then
we proposed a procedure to design a robust and stable observer based on the eigenvalue estimation of the observer state
matrix. After that, the observer performance defined by the mean square observation error is analyzed with the estimation
uncertainty based on SLS. Finally, the Support Vector Regression (SVR) technique is used for estimation. The estimation
error bounds with bias-variance trade-offs based on finite data samples are formulated using nonasymptotic analysis.
Moreover, we show that the estimator with bias-variance trade-off has higher scalability beyond the unbiased estimator
in observer design with finite samples.

The main contributions of this article are threefold:

• An unknown linear system is estimated with a biased estimator (SVR) and the sample complexity bounds are obtained
with the bias-variance trade-off parameter 𝛾 . The proposed estimator provides higher flexibility for stable observer
design.

• The robust observer gain is designed to guarantee stability based on the estimation error bounds. It is shown that the
adjustable estimation helps find a stable gain under noise and the proposed estimator is beneficial for designing a
robust observer for an unknown system.
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DING et al. 3

T A B L E 1 Symbols and quantities.

Symbol Definition

A ∈ R
n×n The state matrix

B ∈ R
n×m The input matrix

C ∈ R
n×n The output matrix

Ã ∈ R
n×n The estimation of state matrix

B̃ ∈ R
n×m The estimation of input matrix

ΔA ∈ R
n×n ||A − Ã||

ΔB ∈ R
n×m ||B − B̃||

xk ∈ R
n The state at time k

yk ∈ R
n The output at time k

uk ∈ R
m The input at time k

wk ∼ (0, 𝜎2
wIn) The process noise

vk ∼ (0, 𝜎2
v In) The measurement noise

ek The observer error at time k

𝛾 > 0 The parameter for bias-variance trade-off

L ∈ R
n×n The designed observer gain

K ∈ R
n×n The optimal observer gain

J The mean square observation error

T0 The end-time of each roll-out

N The number of roll-outs

M The upper bound of ||A|| and ||B||

(c, r) The interval of the estimation error, where c is the center, c − r and c + r are the bounds

• The optimality of the designed observer is analyzed. The mean squared observation error bounds are only related to
the upper bound of the estimation error. Moreover, a condition for choosing a suitable observation method is obtained
to determine whether it is worth designing an observer based on dynamics estimations.

The article is organized as follows: The considered problem setting and the observer design goal are shown in Section 2.
The nonasymptotic analysis and estimation error bounds based on SVR are given in Section 3. In Section 4, we propose a
stable observer gain design procedure based on estimation with a bias-variance trade-off for an unknown LTI system. The
performance of the designed observer of the unknown LTI system is formulated in Section 5. The numerical simulations
are conducted in Section 6, to verify the proposed theoretical results both in dynamics estimation and observer design.
Finally, conclusions and future research directions are given in Section 7.

Notation. We let bold symbols denote the vectors and matrices. In is the n-dimension identity matrix. || ⋅ || is the
Euclidean norm. The2 norm is defined by ||Φ||2

2
≜
∑∞

t=0||Φt||2F , where Φ =
∑∞

t=0Φtz−1 is the frequency representation
of signals and || ⋅ ||F is the Frobenius norm. The∞ norm is defined by ||Φ||∞ ≜ sup||z||=1 ||Φ(z)||.

1
z
∞ is the set of real

rational stable strictly proper transfer matrices. Notations <, ≤, > and ≥ are element-wise inequality. E and V stand for
the expectation and covariance, respectively. Table 1 shows some important definitions used in this article. Moreover, we
refer to “estimator” for the estimation of the system dynamics and “observer” for the observation of the state.

2 PROBLEM SETUP

We consider the multiple-input and multiple-output (MIMO) LTI system

xk+1 = Axk + Buk +wk, (1a)

yk = Cxk + vk, (1b)

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6933 by Shanghai Jiaotong U

niversity, W
iley O

nline L
ibrary on [06/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 DING et al.

F I G U R E 1 The overview of the proposed estimation and observer design synthesis.

The system is called “unknown system” for the state and input matrices are unknown. Specifically, the orders of the A
and B are known, C, D and the distributions of the process noise and the measurement noise are known. The elements
in the matrices A and B are unknown. Throughout this article, we make the following assumption.

Assumption 1. C is invertible, (A,C) is observable, (A,B) is stabilizable, and matrices are bounded by
||A||, ||B|| ≤ M with M > 0.

The matrix C is a square matrix in this study, that is, the number of states and outputs are equal. There are many power
systems can be modeled as the proposed model, such as synchronous machines38 and wind power plants.39 Assumption
1 defines the LTI system as controllable and observable, which is a standard condition for observer design. A similar
assumption is also used in the References 26 and 29. In practice, we often encounter designing an observer or Kalman
filter for an unknown dynamics system. Without the dynamics, the observations are hard to obtain. When C is full-rank
and known, one way to observe xk is using C−1yk instead of an observer. We will give a condition for choosing a better
method considering reducing the noise impact in Sections 3 and 5. The scheme of the proposed estimation and observer
design synthesis is shown in Figure 1. The proposed method can be used for designing a Kalman filter for an inertial
measurement unit without knowing the accurate system model.

2.1 Estimation with bias-variance trade-off

This article introduces the biased estimations of Ã and B̃ with a bias-variance trade-off, based on samplings of uk and
yk. The biased results are more flexible than the unbiased ones, which can be obtained by learning methods.35,36 We
first define a trade-off parameter 𝛾 > 0, which quantifies the biased estimation error. The estimation error is defined as
ΔA = A − Ã and ΔB = B − B̃.

Definition 1 (bias-variance trade-off parameter). Given A ≥ 0 and B ≥ 0, 𝛾 > 0 is defined as a
bias-variance trade-off parameter if 𝛾 satisfies

1
1 + 𝛾

||𝛾Ãi − ΔAi|| ≤ A, (2)

1
1 + 𝛾

||𝛾B̃i − ΔBi|| ≤ B, (3)

where subscript i stands for the ith row of the matrix.

Note that the trade-off parameter does not always exist, it depends on the data-driven estimation method. For example,
when using the OLS to estimate the dynamics, the estimation result is an unbiased one, and 𝛾 = 0, ||ΔAi|| ≤ A and
||ΔBi|| ≤ B. The center of the error interval is zero. Then, conditions (2)–(3) do not hold. When 𝛾 ≠ 0, the center of the
error interval is not zero, which follows the definition of biased estimation. In application, the bias-variance trade-off
parameter 𝛾 is first determined, then a specific estimation method is used for estimating Ã, B̃. The error boundsA and
B are obtained according to the specific estimation method. The key to guarantee the standing of (2)–(3) is quantifing
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DING et al. 5

suitable the error bounds. This article gives the error bounds when estimating the dynamics with biased estimation
method (SVR) in Section 5. To use an unbiased estimation method to obtain the error bound, we direct the reader to Ref-
erences 23,24,26-30. When estimating a system whose noise variance is large, a biased estimation will provide a smaller
error variance than an unbiased one.36,40 Detailed discussion about biased estimation will be given in Section 5. The term

1
1+𝛾

avoids the inequalities from being infinite when 𝛾 → ∞.

2.2 Observer design

After estimating system dynamics, the observer gain L is designed. The observer that designed based on estimation results
Ã and B̃ is shown as

x̃k+1 = Ãx̃k + B̃uk + L(yk − Cx̃k). (4)

Then, the observer error ek = x̃k − xk can be written as

ek+1 = (A − LC)ek − ΔAx̃k − ΔBuk −wk + Lvk, (5)

where L ∈ Rn×p is the observer gain, which is also used in the Kalman filter and linear quadratic Gaussian control design.
x̃k ∈ Rn is the state given by the observer.

Apparently, L needs to be designed so that A − LC is stable. When A is known, it is easy to design a suitable L and
make the spectrum radius 𝜌(A − LC) < 1 and the observer be stable. Moreover, a well-designed L can filter the noise in
(5). By referring to Reference 22, we use the mean square observation error J to measure the observer performance,

J =

√√√√ lim
T→∞

(
1
T

T∑

k=0
||ek+1||2

)

. (6)

The value of J depends on the dynamics estimation results and designed observer gain. The two-step procedure, esti-
mation and observer application, give the end-to-end performance analysis based on unbiased estimation,22-24 which
shows that the cost depends on the N data sampled. When N →∞, ||ΔA||→ 0 and ||ΔB||→ 0, and optimal L can be
designed to make the cost is 0.41

However, when the biased dynamics estimation based on finite data is used for L design, the uncertainty in determin-
ing 𝜌(A − LC) needs to be considered. Moreover, the impact of the biased estimation on the observer performance needs
to be investigated since the trade-off parameter 𝛾 brings scalability to estimation.

3 SVR ESTIMATION ERROR BOUND ANALYSIS

In this section, we use the SVR method to estimate the system (1) and obtain the biased estimations. Moreover, the
parameter 𝛾 is used in SVR to trade off the bias and variance.

3.1 Data collection

Since we do not assume that the system (1) is open-loop stable, the output variable y might blow up during the data
collection process. Inspired by previous study on OLS regression,23,24,26-30 we use multi-roll-out procedure to collect uk
and yk. The essence of this procedure is to use collected data in a finite time horizon. The system with x0 = 0 is excited
by Gaussian input uk ∼ (0, 𝜎2

uIm). The data set is then recorded as

{(
yi

k,u
i
k

)
∶ 1 ≤ i ≤ N, 0 ≤ k ≤ T0

}
, (7)

where i is the index for each roll-out, and T0 is the end time of the roll-out. The total number of data points is NT0. Gaussian
input satisfies the sufficient persistency of excitation condition for linear systems.42 A similar roll-out procedure is used

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6933 by Shanghai Jiaotong U

niversity, W
iley O

nline L
ibrary on [06/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 DING et al.

in References 23,24,27 to deal with unstable single-input single-output, and MIMO systems. Besides multiple roll-out
procedures, single roll-out procedures are used to identify open-loop stable systems.26,28-30

Remark 1. x0 can follow a Gaussian distribution with finite variance, which does not influence the regression
procedure and regression error analysis.24

3.2 SVR procedure

After data collection, an SVR-based estimator is used to estimate the system dynamics. Input and output data are put into
tuples for each roll-out,

f (zk) =
[
y1

k, y2
k, … , yN

k

]
∈ R

n×N
, (8a)

zk =

[
y1

k−1

u1
k−1

,
y2

k−1

u2
k−1

, · · · ,
yN

k−1

uN
k−1

]

∈ R
(n+m)×N

, (8b)

and the noises w and v are represented as

bk =
[
w1

k−1 + v1
k − Av1

k−1, … , wN
k−1 + vN

k − AvN
k−1
]
. (9)

Combine all the data as

k = [f (zk); zk;bk] ∈ R
(3n+m)×N

. (10)

When k = T0, the final data is used to estimate system dynamics, and such a procedure is called final-data estimation.23,27

The number of rounds in the final data collection is N, and all data is recorded. To efficiently use the data collected in the
collection procedure, data from k = 1 to k = T0 are all used for estimation, as {1,2, … ,T0} ∈ R(3n+m)×(T0−1)N . This
procedure is referred to as all-data estimation.

Unlike OLS, which can estimate the coefficients of a matrix at one time, ordinary SVR can only regress one row of a
matrix. To ease the notation, we consider the estimation based on T0 in the following subsection. Then, regression of
(1a) for each row of

[
C−1A, C−1B

]
is shown as

fi(zk) =
[
C−1A, C−1B

]
izk + bk,i, (11)

where subscript i stands for the ith row of the matrix, that is, fi(zk) ∈ R1×N ,
[
C−1A, C−1B

]
i ∈ R1×(n+m), bk,i ∈ R1×N . For

clear expression, we denote
[
C−1A, C−1B

]
as
[
Â, B̂

]
.

min
[Â, B̂]i

i =
1
2
‖‖‖
[
Â, B̂

]
i
‖‖‖

2
+ 1

2𝛾

N∑

j=1
(𝜉+2

j + 𝜉−2
j ), (12a)

s.t. fi(zj
k) −

[
Â, B̂

]
iz

j
k − 𝜉

+
j ≤ 0, (12b)

− fi(zj
k) +

[
Â, B̂

]
iz

j
k − 𝜉

−
j ≤ 0, (12c)

𝜉
+
j , 𝜉

−
j ≥ 0, (12d)

where zj
k ∈ R(n+m)×1 is the jth column of zk, fi(zj

k) ∈ R, 𝜉+j and 𝜉−j are slack variables to separate bj
k,i ≥ 0 and bj

k,i ≤ 0. 𝛾 is
the parameter. Although the estimation results cannot be identical to the actual value due to the noise, the estimation goal
in this article is to get a bounded deviation-based finite sample. The estimations of A and B are given based on solving
the dual problem of (12) by introducing non-nagetive dual parameter 𝜶 ∈ RN×1 as

[
C−1Ã, C−1B̃

]
i = 𝜶

⊤z⊤k , (13)
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DING et al. 7

where Ã and B̃ are the estimations of A and B, respectively. We refer readers to Reference 43 for the details about obtaining
(13). The augmented SVR is formulated to estimate A and B,

arg min[
Â, B̂

]

n∑

i=1
i. (14)

Note that the parameter 𝛾 can be used to trade off bias and variance of the estimation.36 When 𝛾 → 0, the second term
of (12a) dominates the minimization, and the estimation results tend to be the same as the unbiased results of OLS. The
variance of the estimation decreases as parameter 𝛾 increases. These methods attempt to decrease the regression variance
and improve the model’s robustness by sacrificing the unbiasedness property. However, OLS seeks to obtain an unbiased
estimation and overlooks the variance, which could lead to poor performance (i.e., large variance) in regression. Thus,
compared to OLS, we can use SVR with a tunable parameter 𝛾 to control the trade-off between bias and variance and
improve the estimation performance.

3.3 Sample complexity of the SVR estimation

We first show the distribution of SVR estimation for an LTI Gaussian system. Define the matrices Gk and Fk as

Gk =
[
Ak−1B Ak−2B … B

]
,

Fk =
[
Ak−1 Ak−2 … In

]
.

Then, f
([

yk−1
uk−1

])
and

[
yk−1
uk−1

]
follow

f

([
yk−1

uk−1

])

∼ (0,𝝈2
k),

[
yk−1

uk−1

]

∼

(

0,

[
𝝈

2
k−1 0
0 𝜎

2
uIm

])

,

where 𝝈2
k = 𝜎

2
uGkG⊤

k +
(
𝜎

2
w + 𝜎2

v
)

FkF⊤k + 𝜎
2
v Fk+1F⊤k+1. Notice that the noise will propagate throughout the system with

time, and the accumulation is directly reflected by convolution, which is represented by Gk and Fk. By Assumption 1, we
have ||A|| ≤ M and ||B|| ≤ M, thus V(Buk) ≤ mM𝜎

2
uIn and 𝝈2

k ≤ (nM2T0−1
𝜎

2
u +M2T0−2(𝜎2

w + 𝜎2
v ) +M2T0𝜎

2
v )In when k = T0.

Then, the regression procedure can be considered into two parts: i) regressing A with the residual terms BuT0 and wT0 +
vT0+1 − AvT0 , which can be treated as the noise together. Since V(Buk) ≤ mM𝜎

2
uIn and V(wT0 + vT0+1 − AvT0) ≤ (𝜎

2
w +

(M + 1)𝜎2
v )In, the covariance of the noise when regressing A is equal or less than 𝜎2

AIn = (mM𝜎
2
u + 𝜎2

w + (M + 1)𝜎2
v )In. ii)

regressing B with the residual terms AyT0
and wT0 + vT0+1 − AvT0 , which can be treated as the noise together. Since 𝝈2

T0
≤

(nM2T0−1
𝜎

2
u +M2T0−2

𝜎
2
w)In and V(wT0 + vT0+1 − AvT0) ≤ (𝜎

2
w + (M + 1)𝜎2

v )In, the covariance of the noise when regressing
B is equal or less than 𝜎2

BIn = (nM2T0−1
𝜎

2
u + (M2T0−2 + 1)𝜎2

w + (M + 1)𝜎2
v )In.

Lemma 1. For a linear system with independent Gaussian noise (1a), the expectation and variance of Ãi
estimated by SVR with L2 loss (14) are

E(Ãi) =
1

1 + 𝛾
Ai, (15a)

V(Ãi) ≤
1

1 + 𝛾
(𝜎2

A(yT0−1y⊤T0−1)
−1 + 𝛾M2In), (15b)

and the expectation and the variance of B̃i

E(B̃i) =
1

1 + 𝛾
Bi, (16a)

V(B̃i) ≤
1

1 + 𝛾
(𝜎2

B(uT0−1u⊤T0−1)
−1 + 𝛾M2Im), (16b)
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8 DING et al.

Proof. Please see Appendix A.1. ▪

Note that 𝜎2
A(yT0−1y⊤T0−1)

−1 is the estimation variance based on OLS. Thus SVR has a (1∕(1 + 𝛾)) minor estimation
error variance under more considerable variance noise (see Appendix A.1). Thus, SVR can provide more stable results
than OLS when estimating a system with large noise. Since there is a linear relationship between OLS-based estimation
and SVR-based one, the estimation results of SVR follow a normal distribution. Moreover, when only the upper bound
of the process and measurement noise variances are known, the upper bound of 𝜎2

A and 𝜎2
B can be deduced with the

procedure mentioned above.
The distribution of Ãi and B̃i cannot be used to quantify the error bound with a certain value. Then, Theorem 1 is

given to quantify the estimation error bound.

Theorem 1. Given a constant 𝛿 ∈ (0, 1). If all-data in N roll-outs from beginning to T0 is used for estimation
based on SVR in (14), then we have the bounds with probability at least 1 − 𝛿 as,

1
1 + 𝛾

||𝛾Ãi − ΔAi|| ≤

√
𝜃A + n𝛾M2

(1 + 𝛾)N0
+

√
2(𝜃A + n𝛾M2) log(1∕𝛿)

(1 + 𝛾)N0
, (17)

1
1 + 𝛾

||𝛾B̃i − ΔBi|| ≤

√
𝜃B +m𝛾M2

(1 + 𝛾)N0
+

√
2(𝜃B +m𝛾M2) log(1∕𝛿)

(1 + 𝛾)N0
, (18)

where N0 = (T0 − 1)N, 𝜃A =
4n(mM𝜎

2
u+𝜎

2
w+(M+1)𝜎2

v )
N(nM2T0−1𝜎2

u+M2T0−2(𝜎2
w+𝜎2

v )+M2T0𝜎2
v )

and 𝜃B =
4m(nM2T0−1

𝜎
2
u+(M

2T0−2+1)𝜎2
w+(M+1)𝜎2

v )
N𝜎2

u
.

Proof. Please see Appendix A.2. ▪

Theorem 1 formulates the relationship between the estimation and the estimation error. Different from the sample
complexity of the OLS-based estimator, which directly gives the bound of the estimation error, Theorem 1 shows the
bound of ||𝛾Ãi − ΔAi|| for the bias-variance trade-off in the estimation. Since Ãi can be obtained when the training sample
and sample length are given, the uncertainty of estimation error is quantified in Theorem 1. Theorem 1 also states that
the sample-complexities of ΔAi and ΔBi behavior as (1∕

√
N), which is consistent with the previous studies based on

OLS estimation.23,24,26-29 Further, the parameter 𝛾 can change the bound of estimation error under fixed sample length
N. The essence lies in the bias-variance trade-off based on the parameter 𝛾 in SVR.

Based on the estimation bound given in Theorem 1,A andB are given with probability at least 1 − 𝛿 as,

A =

√
𝜃A + n𝛾M2

(1 + 𝛾)N0
+

√
2(𝜃A + n𝛾M2) log(1∕𝛿)

(1 + 𝛾)N0
, (19a)

B =

√
𝜃B +m𝛾M2

(1 + 𝛾)N0
+

√
2(𝜃B +m𝛾M2) log(1∕𝛿)

(1 + 𝛾)N0
. (19b)

This shows that the error boundA andB can be decreased by increasing 𝛾 when regressing the system (1) with large
noise (𝜃A ≥ nM2

, 𝜃B ≥ mM2). Otherwise, when the noise variance is small (𝜃A ≤ nM2
, 𝜃B ≤ mM2), it is better to use a

small parameter 𝛾 .

4 RESULTS ON STABLE GAIN DESIGN

In this section, we introduce the design of the stable observer gain based on biased estimation. The interval of the esti-
mation error needs to be determined to quantify the uncertainty bound. The interval of the estimation error is defined as
(c, r) = [c − r, c + r], where c is the center, c − r and c + r are the bounds.
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DING et al. 9

Lemma 2. Suppose the estimation defined in Definition 1 is given, then the estimation error of the elements of
A and B are in the intervals as

ΔAi,j ∈ 
(
𝛾Ãi,j,

√
(1 + 𝛾)A

)
, (20a)

ΔBi,j ∈ 
(
𝛾B̃i,j,

√
(1 + 𝛾)B

)
, (20b)

Proof. Please see Appendix A.3. ▪

Lemma 2 further illustrates that 𝛾 can change the interval of error. The bias-variance trade-off lies in the different
variation rates of the center and the radius in (20). More importantly, 𝛾 can change the bound of the error interval, which
provides scaleability in the uncertainty analysis. Take the estimation of A as an example. The interval of A is obtained by
the estimation procedure as

Ai,j ∈ 
(
(1 + 𝛾)Ãi,j,

√
(1 + 𝛾)A

)
. (21)

When analyzing the stability of A, the spectral radius needs to be examined. The biased estimation in (21) provides a
way to adjust the asymmetric interval of Ai,j by tuning 𝛾 . Bounds of ||ΔA|| and ||ΔB|| can be obtained by the following
lemma.

Lemma 3. Suppose (20) holds true, then ||ΔA|| ≤ 𝜖A and ||ΔB|| ≤ 𝜖B, where 𝜖A and 𝜖B are

𝜖A =

√√√√
n∑

i=1

n∑

j=1

(
||𝛾Ãi,j|| +

√
(1 + 𝛾)A

)2
, (22a)

𝜖B =

√√√√
n∑

i=1

m∑

j=1

(
||𝛾B̃i,j|| +

√
(1 + 𝛾)B

)2
. (22b)

After estimation and obtaining the error interval, the observer gain L needs to be designed to guarantee the stability
of the observer. Specifically, the goal is to determine L, so that A − LC is stable. However, only the interval of A can be
obtained by the estimation procedure as (21). Then A − LC is in the interval as

Ai,j − {LC}i,j ∈ 
(
(1 + 𝛾)Ãi,j − {LC}i,j,

√
(1 + 𝛾)A

)
, (23)

where {LC}i,j is the i, jth element in LC. Then, the design of stable observer gain is equivalent to finding a suitable L,
such that the spectral radius of the matrix A − LC is smaller than 1. Determining the robustness of a given observer gain
(or controller) under uncertainty is widely studied. Several methods are developed to infer the range of uncertainty for
the robust controller.44-46 However, designing a robust observer gain (controller) is still a hard problem.47 A conservative
design for a stable observer gain is given in Theorem 2, where L guarantees that A − LC is stable for all combinations in
(23).

Theorem 2. Given the range of A in (23), if the observer is stable (i.e., the observer error is bounded), then the
observer gain L satisfies

||Ai,i − {LC}i,j|| < 1, (24a)

j=n∑

i≠j,j=1
{||(1 + 𝛾)Ãi,j−{LC}i,j|| +

√
(1 + 𝛾)A} ≤ 1 − ||Ai,i − {LC}i,j||. (24b)
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10 DING et al.

Proof. Please see Appendix A.4. ▪

Theorem 2 gives necessary conditions for obtaining a stable observer gain L, which are valid for a general form of
matrix A − LC. The observer gain can be easily designed when the uncertain system is with weakly-coupled states, that
is, the norm of the diagonal element is much larger than that of the other element.

Remark 2. Equation (24a) shows that a smaller range of interval of (21) leads to finding L more easily. The
range of interval

√
(1 + 𝛾)A depends on 𝛾 and A. When 𝛾 → 0, the estimation tends to be unbiased with

a larger variance, which leads to larger A. Similarly, the sum term needs to be small to satisfy the inequal-
ity in (24b). Note that the error bound is asymmetric. The center of the error bound is away from 0 as 𝛾
increases, leading to the sum term decreasing. Therefore, the trade-off in bias-variance enables selecting a
suitable parameter to obtain a minimum

√
(1 + 𝛾)A, which benefits designing a stable observer gain for an

unknown system.

5 RESULTS ON OBSERVER PERFORMANCE ANALYSIS

The observer performance is analyzed based on the observer gain designed in Section 4. First, suppose there exists an
optimal observer gain K, which is obtained by solving the Ricatti equation of the observer48 and J = 0 in (6). When the
system dynamics is known, the observer error e(z) in (5) is given with z-transfer into frequency domain according to (5)
in the Reference 22 as

(zI − A + LC)−1Kv − (zI − A + LC)−1Lv. (25)

Notice that only the measurement noise v displays in (25) since the observer gain K has already balanced the pro-
cess noise w and measurement noise v. Define the noise e(z) responses to Kv and v by Φw ≜ (zI − A + LC)−1 and
Φv ≜ (zI − A + LC)−1L, respectively. Then, the observer error e(z) is given as

e = (ΦwK − Φv)v, (26)

L is parameterized as Φ−1
w Φv, where the closed-loop responses Φw and Φv are in the set of real rational stable strictly

proper transfer matrices 1
z
∞. When the observer is internally stable, the mean squared error is

J = ||(ΦwK − Φv)𝜎v||2 , (27)

where || ⋅ ||2 is the2 norm. When L = K, the error-free observer is achieved, and J = 0. The observer error e(z) is given
as

e = Φ̃wΔAΦABu + Φ̃wΔAΦAKv + Φ̃wΔBu + (Φ̃wK − Φ̃v)v, (28)

where Φ̃w ≜ (zI − Ã + LC)−1, Φ̃v ≜ (zI − Ã + LC)−1L,ΦA ≜ (zI − A)−1 and (zI − A) is inevitable. Then, the mean squared
error of the state for the observer with uncertainty is given in Lemma 4.

Lemma 4. The stable observer of system (1) has a mean squared observation error J as

J =
‖‖‖‖‖‖

[
Φ̃w Φ̃v

]
[

K
− I

]

𝜎v + Φ̃w[ΔA ΔL]

[
ΦAK

I

]

𝜎v +Φ̃w[ΔA ΔB]

[
ΦAB

I

]

𝜎u

‖‖‖‖‖‖2

, (29)

where ΔL = K − L is the difference between designed observer gain and optimal gain.

The input u and noise v both influence the observer error as shown in (5). When L is designed based on Theorem 2,
the upper bound of the mean squared observation error is given in the following Theorem.
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DING et al. 11

Theorem 3. Given dynamics estimation satisfies ||ΔA|| ≤ 𝜖A, ||ΔB|| ≤ 𝜖B and ||ΔL|| ≤ 𝜖L. The upper bound J1
of the mean squared error J is

J ≤ J1(K) = ‖‖Φ̃wK − Φ̃v]‖‖2
𝜎v +

√
2𝜖1‖‖Φ̃w‖‖2

‖‖‖‖‖‖

[
ΦAB

I

]‖‖‖‖‖‖∞

𝜎u +
√

2𝜖2‖‖Φ̃w‖‖2

‖‖‖‖‖‖

[
ΦAK

I

]‖‖‖‖‖‖∞

𝜎v, (30)

where 𝜖1 = max {𝜖A, 𝜖B} and 𝜖2 = max {𝜖A, 𝜖L}.

Proof. Please see Appendix A.5. ▪

The term 𝜖L is bounded since A and Ã are bounded. When directly using C−1yk to observer xk, the observer perfor-
mance is Jy = ||C−1||𝜎v. Although K cannot be obtained directly, it satisfies the conditions in Theorem 2. Therefore, an
alternative solution for the bound of J can be obtained as

J ≤ J2 = max
K̂

J1(K̂)

s.t. K̂ follows (25). (31)

Then, the following corollary is given to choose a better observation method.

Corollary 1. Given the performance upper bound J2 of (31) and Jy = ||C−1||𝜎v, the mean squared observation
error of using observer design method is smaller than that of using direct observation method when J2 < Jy.

Corollary 1 shows that when J2 < Jy, it is better to design an observer for xk observation based on the proposed method,
since (31) gives an upper bound of the mean squared observation error using observer design method. It also indicates
that the key for accurate observation is that the bounds of ||ΔA|| and ||ΔB|| are small. The parameter 𝛾 influences the
bounds and further influences the performance. Moreover, A and B also influence the performance, which will be
discussed after we give a specific regression method in Section 3.

Note that the performance J can be improved by choosing an optimal L. The combination of the last two terms in (30)
is upper bounded by

√
2𝜖1,2‖‖Φ̃w‖‖2

⎧
⎪
⎨
⎪
⎩

‖‖‖‖‖‖

[
ΦAB

I

]‖‖‖‖‖‖∞

𝜎u +
‖‖‖‖‖‖

[
ΦAK

I

]‖‖‖‖‖‖∞

𝜎v

⎫
⎪
⎬
⎪
⎭

, (32)

where 𝜖1,2 = max{𝜖1, 𝜖2}. An alternating simplified formulation is introduced by using a robust SLS optimization
technique:

Jopt = min
Φ̃w,Φ̃v

F‖‖Φ̃w‖‖2
+ ‖‖Φ̃wK − Φ̃v‖‖2,

s.t. ‖‖Φ̃w‖‖2
≤ ,

Φ̃w(zI − Ã) − Φ̃v = I,

Φ̃w, Φ̃v ∈
1
z
∞, (33)

where  is a regulation parameter to bound ‖‖Φ̃w‖‖2
, F =

√
2𝜖1,2

{
‖‖‖‖‖

[
ΦAB

I

]‖‖‖‖‖∞
𝜎u +

‖‖‖‖‖

[
ΦAK

I

]‖‖‖‖‖∞
𝜎v

}

is constant. The

affine constraints are used to parameterize the observer following the procedures in SLS.22,32 Further inspired by their
work, we choose  as  ≥ 2(1 + ||K||)||zI − A + K||2 and the estimation error satisfies 𝜖A||I − A + K||∞ ≤ 1∕2. Then, the
optimal observation performance Jopt fulfills

Jopt ≤ 𝜖1,2

⎧
⎪
⎨
⎪
⎩

√
2
⎧
⎪
⎨
⎪
⎩

‖‖‖‖‖‖

[
ΦAB

I

]‖‖‖‖‖‖∞

𝜎u +
‖‖‖‖‖‖

[
ΦAK

I

]‖‖‖‖‖‖∞

𝜎v

⎫
⎪
⎬
⎪
⎭

+ 2‖zI − A + K‖2
𝜎v

⎫
⎪
⎬
⎪
⎭

. (34)
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12 DING et al.

This result shows that the performance of the optimal observer based on dynamics estimation has a positive correlation
with 𝜖1,2. The influence of 𝛾 to Jopt can be discussed by comparing 𝜖A and 𝜖L. When 𝜖A ≤ 𝜖L, Jopt is bounded and related
to 𝜖L. When 𝛾 increases, 𝜖A increases and 𝜖A > 𝜖L, then Jopt ∼ (𝛾). Note that the increase of 𝛾 does not necessarily lead
to 𝜖A > 𝜖L. However, a small 𝛾 leads to small 𝜖A when is fixed, and the performance of the optimal observer does not
depend on estimation error bound.

By introducing (19) into (24), it can be determined whether the observer is needed to be given a finite sample. More-
over, a smaller 𝛾 benefits designing a stable observer according to (19) and Theorem 2. The complexity of Jopt follows
(𝛾∕

√
(N)) and shows that the decrease of 𝛾 and the increase of the number of samples helps with obtaining a better

observer performance. It is worth mentioning that (15)–(19) need the values of Â and B̂, which are calculated based on
the estimation method. Thus, we cannot obtain A and B before the dynamics estimation method returns the result.
After obtainingA andB, we can design the observer and determine whether the bound of the observer’s performance
satisfies the requirement. However, decreasing the parameter makes the estimation method sensitive to the noise in the
data and the estimation result fluctuates with the increase of the sample number, as shown and discussed in Section 6.
Therefore, we recommend readers select the parameter from a large one to a small one with a search-based method.

6 NUMERICAL SIMULATIONS

In this section, several numerical simulations are conducted to illustrate the estimation and error bound based on the pro-
posed method and the optimality of the designed observer for an unknown LTI system. We mainly focus on the influence
of parameter 𝛾 . The simulations are used for showing that

• The biased estimator can provide smaller variance results than an unbiased one when the system is with large-variance
noise.

• The proposed error bound is valid for the SVR with different 𝛾 and noise variance.
• Larger 𝛾 benefits designing an observer whose performance is stable under a different number of samples, since the

estimation error variance is smaller.

We consider an open-loop stable LTI system with state and input matrices

A =
⎡
⎢
⎢
⎢
⎣

0.9 0.01 0
0.01 0.9 0.01

0 0.01 0.9

⎤
⎥
⎥
⎥
⎦

,B =
⎡
⎢
⎢
⎢
⎣

1
1.5
2

⎤
⎥
⎥
⎥
⎦

. (35)

We also consider an open-loop unstable system, adapted from References 23, as follows

A =
⎡
⎢
⎢
⎢
⎣

1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

⎤
⎥
⎥
⎥
⎦

,B =
⎡
⎢
⎢
⎢
⎣

1
1.5
2

⎤
⎥
⎥
⎥
⎦

. (36)

In our experiments, we use stochastic input with 𝜎u = 1, testing the method’s performance under different model noises
with 𝜎w = 0.1, 𝜎w = 1 and 𝜎w = 10. For the multi-rollout setup, the rollout length is set to T0 = 11, and we vary the number
of rollouts from 10 to 450. Empirically, 𝛾 is often chosen to range in (10−3

, 10−1) for the estimator. Besides, due to the
truncation error in computation, unsuitable 𝛾 would lead to one of the terms in (12a) equals 0 and cause the solution to
fail. We select 𝛾 = 0.005, 𝛾 = 0.01, 𝛾 = 0.05, and 𝛾 = 0.1. LIBSVM is modified49 with quadratic loss function. For the error
bound calculation, we select the matrices bound M = 1.1 and possibility coefficient 𝛿 = 0.01.

6.1 Estimation for systems with varying process noise

First, the estimator (12) with 𝛾 = 0.05 is used to estimate the open-loop stable system (35) and open-loop unstable system
(36). The sample length used for estimation is set from 100 to 4500 to show the variation of error based on different sample
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DING et al. 13

T A B L E 2 RMSEs of estimations based on the OLS method and the proposed method with varying process noises for different systems.

𝝈w = 0.1 𝝈w = 1 𝝈w = 10

OLS Ours OLS Ours OLS Ours

Open-loop stable system (35) Ã 0.0261 0.0265 0.0328 0.0354 0.0541 0.0484

B̃ 0.0029 0.0038 0.0211 0.0315 0.4278 0.2695

Open-loop unstable system (36) Ã 0.0225 0.0236 0.0166 0.0165 0.0171 0.0168

B̃ 0.0019 0.0036 0.0374 0.0359 0.3774 0.2506

F I G U R E 2 Estimation based on the proposed method for systems with varying process noise.

numbers. OLS is used to estimate the dynamics based on the same data for a fair comparison. Root mean square error
(RMSE) is used to measure the estimation error of A, B. Table 2 shows the statistical results of 45 repeated estimations.
The RMSE of the estimation of the proposed method is smaller than that of OLS when the process noise becomes larger,
which is consistent with the theoretical analysis. This illustrates that SVR is more suitable for dynamics estimation with
large-variance noise since the lower variance of the error provides less volatile results. The behavior of the proposed
estimator with varying process noise is shown in Figure 2. The differences in estimation error on different process noises
are small, which shows that the variance of process noise has little effect on the proposed estimator. The error bounds
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14 DING et al.

F I G U R E 3 Estimation based on the proposed method with varying parameter.

given in (20) are effective. The error intervals tend to be smaller when introducing more samples to the estimation process.
Furthermore, the variance of process noise has little effect on error bounds, which shows the robustness of the proposed
estimator (12) and validates the error bound analysis (20).

6.2 Estimation with varying parameter of the proposed estimator

Then, the estimations of the proposed method with varying sample lengths and parameter 𝛾 are conducted. The behavior
of the proposed estimator is shown in Figure 3. The proposed estimator works well on both open-loop stable and unsta-
ble systems. The error upper bounds of estimation significantly change with parameter 𝛾 . This is due to the bias-variance
trade-off in the proposed method. It cannot be unbiased while holding low variance at the same time. Moreover, as pre-
sented in the detail of the lower bound in Figure 3B, the variation of the estimation is large when parameter 𝛾 is small.
When 𝛾 is small, the estimator seeks a smaller biased result, the upper bound is dragged to the x-axis, and the variance
increases. The variation of 𝛾 also changes the interval between the upper and lower bound. When seeking a small interval
of the error bound, it can be done with smaller 𝛾 . From the point of stable observer design, we want to have dynamics esti-
mations that do not influence the stability’s determination. In Figure 3A, A is determined to be stable after N = 1800 for
the error bound guarantees ||A|| < 1 as (21). Reducing the estimation error interval can be done by introducing more sam-
ples into the previous OLS-based estimation methods, whereas the proposed estimator provides two ways (i.e., turning 𝛾
and adding samples) to change the interval.
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DING et al. 15

F I G U R E 4 Deviation between observer cost bound and cost with different estimation parameter 𝛾 on the open-looped stable system.

F I G U R E 5 Ratios of observer costs with different estimation parameter 𝛾 , where r ∶= (J𝛾 − J∗)∕J∗, J𝛾 denotes the cost with different
estimation parameter 𝛾 , J∗ is the benchmark cost with 𝛾 = 0.1.
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16 DING et al.

6.3 Simulations on observer gain design and observer performance analysis

Based on the estimation results with different 𝛾 , the stable observer gain is designed based on Theorem 2. The stable gains
are designed based on estimation with sample length from 100 to 4500. We use the same gain if (24) holds.

Then, observers are constructed to verify the proposed cost bound and observer performance based on estimations
with different 𝛾 . We run 1000 Monte Carlo simulations for different sample lengths N. The mean cost J and cost bound
Jb for the observer of the open-loop stable system at each sample length are calculated. The latter is obtained according
to Theorem 3 with 𝜖1 = 𝜖B, for 𝜖B is maximum among the candidates when N ≤ 4500. The deviation ΔJ = Jb − J at each
sample length is shown in Figure 4. Deviations are above 0, which means the cost bound is valid with different 𝛾 . Further-
more, costs with different 𝛾 are compared in the open-loop stable and unstable systems. In Figure 5, we show the ratios
of observer costs with different 𝛾 . Ratio r ∶= (J𝛾 − J∗)∕J∗, where J𝛾 denotes the cost with different estimation parame-
ter 𝛾 , J∗ is the benchmark cost with 𝛾 = 0.1. The reason for choosing 𝛾 = 0.1 as the benchmark is that it leads to a good
trade-off between bias and variance, resulting in a smaller variance of the cost. This makes it suitable for showing the
fluctuations of the different costs and evaluating the performance of the observer under different parameter choices. The
proposed observer design procedure provides stable observations for both open-loop stable and unstable systems. It is also
clear that the cost variance is much larger when 𝛾 is smaller. This corresponds to the high-variation estimation when 𝛾 is
small. Thus, we recommend using a relatively large 𝛾 to have a stable estimation result for a stable observer performance.
Certainty–Equivalent (CE) Kalman filters with OLS estimations are also designed to show the performance.22 The cost
ratio (JCE − J∗)∕J∗ is shown in Figure 5. The performance fluctuation of the CE-Kalman filter is moderate compared with
those of the proposed method. The cost is also moderate, which indicates that the biased estimation method can achieve
more flexibility than OLS methods since there is a parameter to trade off the bias and the variance in the SVR.

In conclusion, the simulations demonstrate that the parameter 𝛾 of the proposed estimator influences the estimation
results and observer performance, and a suitable 𝛾 benefits the observer design and stable performance. Empirical speak-
ing, a small 𝛾 helps with determining a small estimation bound. A large 𝛾 helps with providing a stable estimation result
and stable observer performance.

7 CONCLUSION

This article mainly focused on SVR-based observer design and analysis for unknown linear systems. We showed the
detailed system dynamics estimation procedure, including data collection and the estimator’s formulation. Furthermore,
we analyzed and formulated the sample complexity bounds for the estimation error of the proposed method as(1∕

√
N)

with an adjustable parameter 𝛾 , which provides another way to change the estimation error interval besides introducing
more samples. We also proposed an observer gain design procedure to guarantee stability based on the dynamics estima-
tion results and the error bound. The procedure reveals that 𝛾 helps find a stable gain set by adjusting the estimation error
interval. We further analyze the end-to-end sample complexity for the sub-optimal observer for an unknown system. We
formulated a mean square observation error bound for estimation and observer design, connecting the estimation error
and observer performance. Finally, numerical simulations verify the proposed methods. Simulations also illustrated that
the parameter 𝛾 of the proposed method influences the estimation results and observer performance, and a suitable 𝛾
benefits the observer design and stable performance.

Future directions for research include investigating the influence of the parameter 𝛾 on performance variance in
estimation and observer (controller) performance. It may be possible to connect the variation with the parameter over a
high probability and investigate optimal parameter selection.
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APPENDIX A. PROOFS

A.1 Proof of Lemma 1
First, we give the relationship between SVR and OLS regression results. For clear expression, we use different notations
in this section. The standard linear relationship is given as y = a⊤x + b, where b ∼ (0, 𝜎I). More specifically, the linear
operator a in our problem is A. We use a here for a general illustration. The estimation of a is constructed based on y and x.

To ease the notation, we use w and v to represent the results of SVR and OLS in this proof, respectively. Note that (12)
is the formulation of SVR when it is without magnitude term. The following relationship can be obtained by analysing
𝜕

𝜕w
= 0 according to Reference 40.

wi =
1

1 + 𝛾
vi.

This conclusion is also given in Reference 40 by geometrical decomposition of SVR and OLS. Then, the expectation of w
is given as

E(wi) = E

(
1

1 + 𝛾
vi

)
= 1

1 + 𝛾
E(vi) =

1
1 + 𝛾

ai.
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Note that OLS is an unbiased estimator when the system with Gaussian excitation. Thus, E(v) equals the actual value.
The covariance of w is given as

V(wi) =
1

1 + 𝛾
(V(vi) + 𝛾a2

i ).

Recall the covariance of OLS estimation is

V(v) = 𝜎(xx⊤)−1
.

For ||A|| ≤ M in Assumption. 1, thus, ||a|| ≤ M in the linear relationship and we have

V(w) ≤ 1
1 + 𝛾

(𝜎(xx⊤)−1 + 𝛾M2I).

Lemma 1 stands. It also reveals that the SVR provides a biased estimation, whereas the estimation covariance is smaller
than that of OLS when V(vi) ≥ a2

i .

A.2 Proof of Theorem 1
According to (1.1) of Reference 50, when X follows a normal distribution with mean 𝜇 and covariance matrix Σ, then
the sample mean 𝜇 is also normal with mean 𝜇 and covariance matrix (1∕N)Σ, and therefore, for any 0 < 𝛿 < 1, with
probability at least 1 − 𝛿

||𝜇 − 𝜇|| ≤
√

Tr(Σ)
N

+
√

2𝜆max log(1∕𝛿)
N

,

where 𝜆max denotes the largest eigenvalue of Σ. According to the distribution of estimation Ã given by (15), the
nonasymptotic bound of estimation error is given as

||Ãi − E(Ãi)||

≤

√√√√Tr
[
𝝈

2
A(yT0−1y⊤T0−1)−1

]
+ n𝛾M2

(1 + 𝛾)N0
+

√√√√2
{

Tr
[
𝝈

2
A(yT0−1y⊤T0−1)−1

]
+ n𝛾M2

}
log(1∕𝛿)

(1 + 𝛾)N0

≤

√
𝜃A + n𝛾M2

(1 + 𝛾)N0
+

√
2(𝜃A + n𝛾M2) log(1∕𝛿)

(1 + 𝛾)N0
, (A1)

where 𝜃A = n(mM𝜎
2
u + 𝜎2

w + (M + 1)𝜎2
v )||(yT0−1y⊤T0−1)

−1|| and N0 = (T0 − 1)N. According to Corollary 5.35 of Reference 51
and Lemma 2.3 of Reference 23, the nonasymptotic bound of ||(yT0−1y⊤T0−1)

−1|| is given as

||(yT0−1yy⊤T0−1)
−1|| ≤

||(vv⊤)−1||
nM2T0−1𝜎2

u +M2T0−2(𝜎2
w + 𝜎2

v ) +M2T0𝜎
2
v
, (A2)

where v is a quantity that follows a standard Gaussian distribution and with probability at least 1 − 𝛿,

||(vv⊤)−1||
1
2 ≤

1
√

N +
√

n +
√

2 log(1∕𝛿)
≤

2
√

N
. (A3)

Combine (A2) and (A3), it gets

𝜃A ≤
4n(mM𝜎

2
u + 𝜎2

w + (M + 1)𝜎2
v )

N(nM2T0−1𝜎2
u +M2T0−2(𝜎2

w + 𝜎2
v ) +M2T0𝜎

2
v )
. (A4)

The upper bound is used in (A1) as 𝜃A =
4n(mM𝜎

2
u+𝜎

2
w+(M+1)𝜎2

v )
N(nM2T0−1𝜎2

u+M2T0−2(𝜎2
w+𝜎2

v )+M2T0𝜎2
v )

, which does not influence the inequality of (A1).

Note that Ãi − E(Ãi) = 𝛾

1+𝛾
Ãi − 1

1+𝛾
ΔAi, and ||Ãi − E(Ãi)|| = 1

1+𝛾
||𝛾Ãi − ΔAi||. Theorem 1 holds for A estimation.

Similarly, the nonasymptotic bound of estimation error of B̃i is

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6933 by Shanghai Jiaotong U

niversity, W
iley O

nline L
ibrary on [06/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 DING et al.

||B̃i − E(B̃i)|| ≤

√
𝜃B +m𝛾M2

(1 + 𝛾)N0
+

√
2(𝜃B +m𝛾M2) log(1∕𝛿)

(1 + 𝛾)N0
, (A5)

where N0 = (T0 − 1)N, 𝜃B = m(nM2T0−1
𝜎

2
u + (M2T0−2 + 1)𝜎2

w + (M + 1)𝜎2
v )||(uT0−1u⊤T0−1)

−1|| which has the upper bound as

𝜃B =
4m(nM2T0−1

𝜎
2
u + (M2T0−2 + 1)𝜎2

w + (M + 1)𝜎2
v )

N𝜎2
u

. (A6)

A.3 Proof of Lemma 2
For each element in Ãi and ΔAi, it has ||𝛾Ãi,j − ΔAi,j|| ≤ ||𝛾Ãi − ΔAi||. For each elements in Ãi, it has

ΔA2
i,j − 2𝛾Ãi,jΔAi,j − (1 + 𝛾)A + 𝛾2Ã2

i,j ≤ 0, (A7)

Since the coefficient of ΔA2
i,j is 1, the parabola has a minimum point and opens upward. The limit points of ΔAi,j are

obtained by solving (A7) as

𝛾Ãi,j ±
1
2

√
4𝛾2Ã2

i,j − 4(𝛾2Ã2
i,j − (1 + 𝛾)A) = 𝛾Ãi,j ±

√
(1 + 𝛾)A. (A8)

Then,

ΔAi,j ∈ 
(
𝛾Ãi,j,

√
(1 + 𝛾)A

)
.

The interval of ΔBi,j can be obtained based the similar manipulations of that of ΔAi,j.

A.4 Proof of Theorem 2
The main idea of designing a stable observer gain is to keep the eigenvalue less than 1. Here we adapt a conservative
Gershgorin circle theorem for a general form of matrix A − LC.

The center of the disc of each row is ||Ai,i − {LC}i,j||, which is in a unit circle. The largest radius of the disc is ||(1 + 𝛾)
Ãi,j − {LC}i,j|| +

√
(1 + 𝛾)A. The condition is obvious when the disc is in the unit circle.

A.5 Proof of Theorem 3
According to Lemma 4, it has

J =
‖‖‖‖‖‖

[
Φ̃w Φ̃v

]
[

K
− I

]

𝜎v + Φ̃w[ΔA ΔL]

[
ΦAK

I

]

𝜎v +Φ̃w[ΔA ΔB]

[
ΦAB

I

]

𝜎u

‖‖‖‖‖‖2

, (A9)

Inspired by Lemma 2 of Reference 22 and Proposition 3.5 of Reference 23, the inequality is

J ≤
‖‖‖‖‖‖

[
Φ̃w Φ̃v

]
[

K
− I

]

𝜎v

‖‖‖‖‖‖2

+
‖‖‖‖‖‖
Φ̃w[ΔA ΔB]

[
ΦAB

I

]

𝜎u

‖‖‖‖‖‖2

+
‖‖‖‖‖‖
Φ̃w[ΔA ΔL]

[
ΦAK

I

]

𝜎v

‖‖‖‖‖‖2

≤ ‖‖Φ̃wK − Φ̃v]‖‖2
𝜎v + ‖‖Φ̃w[ΔA ΔB]‖‖2

‖‖‖‖‖‖

[
ΦAB

I

]‖‖‖‖‖‖∞

𝜎u + ‖‖Φ̃w[ΔA ΔL]‖‖2

‖‖‖‖‖‖

[
ΦAK

I

]‖‖‖‖‖‖∞

𝜎v. (A10)

Since ||ΔA|| ≤ 𝜖A, ||ΔB|| ≤ 𝜖B, ||ΔL|| ≤ 𝜖L, 𝜖1 = max {𝜖A, 𝜖B} and 𝜖2 = max {𝜖A, 𝜖L}, it has

J ≤ ‖‖Φ̃wK − Φ̃v]‖‖2
𝜎v +

√
2𝜖1‖‖Φ̃w‖‖2

‖‖‖‖‖‖

[
ΦAB

I

]‖‖‖‖‖‖∞

𝜎u +
√

2𝜖2‖‖Φ̃w‖‖2

‖‖‖‖‖‖

[
ΦAK

I

]‖‖‖‖‖‖∞

𝜎v. (A11)
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