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Abstract— The performance of a camera network monitoring
a set of targets depends crucially on the configuration of the
cameras. In this paper, we investigate the reconfiguration strat-
egy for the parameterized camera network model, with which
the sensing qualities of the multiple targets can be optimized
globally and simultaneously. We first propose to use the number
of pixels occupied by a unit-length object in image as a metric
of the sensing quality of the object, which is determined by
the parameters of the camera, such as intrinsic, extrinsic, and
distortional coefficients. Then, we form a single quantity that
measures the sensing quality of the targets by the camera
network. This quantity further serves as the objective function
of our optimization problem to obtain the optimal camera
configuration. We verify the effectiveness of our approach
through extensive simulations and experiments, and the results
reveal its improved performance on the AprilTag detection
tasks. Codes and related utilities for this work are open-sourced
and available at https://github.com/sszxc/MultiCam-Simulation.

I. INTRODUCTION

A. Background and motivation

Cameras play important roles in society surveillance [1],
environmental monitoring [2], and scene perception, localiza-
tion and mapping in robotics [3], etc. Compared to single-
camera systems, camera networks tend to have a larger field
of view and more viewing angles for each object, leading to
stronger anti-interference ability and better detection perfor-
mance [4], [5]. Fig. 1 shows a typical application for camera
networks as drones tracking ground vehicles with cameras.
A typical task of camera networks is to provide adequate
coverage for the targets [6], [7]. However, meeting the
qualitative coverage requirement does not necessarily ensure
the desirable sensing quality of the targets in the scene.
The distortion inevitably introduced in the imaging process
of cameras depends on the lens’s physical properties, the
camera’s parameters, viewing angle and the objects’ relative
position. Different configurations of the camera network may
result in different sensing quality of the targets.

Configuring a camera network properly to cover multiple
targets while ensuring desirable sensing quality is challeng-
ing due to the vast amount of camera parameters involved
and a lack of widely accepted sensing performance metric
[8]. In this paper, we propose a straightforward metric that
captures the coverage and sensing quality of objects for a
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Fig. 1: A network of three cameras mounted on the drones for
tracking autonomous ground vehicles.

camera network, based on which we automate the search for
the configuration that optimizes the proposed metric.

B. Related Work

Recent surveys [9] [10] summarize the historical devel-
opments in the area of camera network coverage. Globally
optimal configuration for such systems, similar to the Art
Gallery Problem [11] and Watchmen Tour Problem [12], has
been proved to be NP-hard, and using general optimization
methods could lead to sub-optimal solutions. Recent litera-
ture reports several approaches that have been proposed to
solve this problem.

In [13] [14], the authors focus on complex indoor en-
vironments and present a method for pan-tilt-zoom (PTZ)
camera reconfiguration. The proposed method considers the
targets, camera distortion, and environment illumination, and
a particle swarm optimizer gives the solution. However, the
performance of the method relies on complete modeling of
the environment, which is generally very difficult to obtain.
The authors in [15] take into consideration the realistic
constraints of computer vision and aim to achieve a balance
between coverage and resolution for multiple cameras. They
split the 2D plane into polygons with equal areas and use a
greedy algorithm to segment the polygons for a simplified
camera model and determine the cameras’ configuration.

Recently, a class of gradient methods based on Voronoi
diagrams has been widely used to solve the problem of
sensor allocation. In [16], the authors focus on a 2D convex
environment and propose a sensing quality metric using prior
knowledge of the imaging process. They successfully use a
provably correct greedy algorithm to configure cameras for
given event distribution.
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Fig. 2: Camera symbol definition.

C. Contributions and Organization

In this paper, we build an automatic reconfiguration system
for camera networks that significantly improves collective
sensing performance. The main contributions are as follows.
• We propose a new metric that measures the coverage

and sensing quality of the targets for a camera. This
metric is easy to compute and is shown to be effective
in simulation and experiments.

• We propose a novel model to quantitatively describe the
effect of the camera distortion on sensing quality, which
is suitable for any pre-calibrated cameras and targets in
3D space.

• We verify the reliability and usability of the strategy
through sufficient experiments both in virtual and phys-
ical environments.

The rest of the paper is organized as follows. Section II
explains the relationship between sensing quality and the
number of pixels occupied by the target, and presents the
proposed sensing quality model for a multi-camera system.
In Section III, we illustrate the effectiveness of the proposed
reconfiguration model using simulations and experimental
results, respectively. Section IV concludes with a summary of
our contributions and a brief discussion of future directions.

II. PROBLEM STATEMENT AND FORMULATION

A general camera network consists of several heteroge-
neous cameras that may have distinct properties. Dynamic
configuration adjustment of the camera network must be
performed collectively to ensure that the entire network of
cameras is globally optimized concerning the specified task
or performance requirements. The sensing process is camera-
specific and mutually exclusive, but when the cameras’ fields
of view overlap the fusion results should be calculated
jointly.

As shown in Fig. 2, we consider a model for a camera
Ci ∈ C for i ∈ {1, 2, . . . , Nc} with a conic field of view,
whose configuration is specified by its fixed position oi ∈
R3, variable optical-axis direction φi ∈ R3, angle of view
2αi ∈ (0, π) and maximum radial resolution of wi pixels.
The position of the target Tj ∈ T for j ∈ {1, 2, . . . , Nt} in
the sensing task is denoted by pj ∈ R3.

Let o′i be the point such that
−−→
o′ipj ⊥ φi. The plane that

is parallel to the camera plane and contains o′i is the target
plane. Let βi

j be the angle between −−→oipj and φi, and γij be the

Fig. 3: Perspective comparison: (left) image space and (right) world
space. The farther away from the lens, the larger the area described
by a single pixel, and vice versa.

angle between
−−→
o′ipj and

−−→
o′ix
′. If p̂j is the estimated position

for Tj , then the sensing error is defined by

εj = ‖pj − p̂j‖2 . (1)

Counting the number of pixels a target occupies in the
image before correcting distortion is an intuitive description
of the sensing quality. To illustrate the idea, suppose the
target with the length of l occupies n pixels in the image.
Moreover, let the actual length represented by each pixel
on the target plane be k. Then the measurement l′ has an
error |l− l′| < 2k. The reason is that each pixel on comple-
mentary metal–oxide–semiconductor (CMOS) measures the
average brightness information through integration [17], and
the error caused by sampling will make both ends of the
target captured as an uncertain pixel. It shows that when
the same target occupies more pixels, the sensor has richer
information to describe the target, making the downstream
object detection more accurate. In other words, a shorter
actual length represented by each pixel results in a smaller
relative error. The error of positioning εj is bounded by

εj < k. (2)

A. Single-Camera Model

This section discusses how the number of pixels occupied
by the target as a metric of sensing quality is related to two
critical parameters, i.e., the camera’s perspective factor and
the distortion factor.

1) Perspective: Perspective primarily depends on the an-
gle of view and focal length which considerably deteriorates
the sensing quality. Objects appear smaller as their distance
from the observer increases. In imaging process, the actual
distance between the camera and the object has a great
influence on the number of pixels that the object occupies,
illustrated in Fig. 3. It is shown that the number of pixels
occupied by an object with unit length is inversely propor-
tional to the distance between the camera and the object. To
improve sensing quality, the camera should be placed closer
to the target.

Suppose that camera Ci performs the task of tracking
target Tj and assume only perspective factor is considered.
According to [18], the sensing quality here can be denote as

qp ,
2|−−→oipj | cosβi

j tanαi

wi
. (3)
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Fig. 4: The arrows indicate the mapping relationship of the pixels
during the distortion correction, and the blue triangles represent the
origin areas on the sensor occupied by two triangles of same size
after correction. In this example, there is 48.4% less information at
the edge of the image than in the center.

2) Distortion: Distortions can be introduced at the image
acquisition and processing stages. With a specific lens and
perspective, distortions are inherent in the captured videos
which can seriously affect the achievable results [19]. In the
pinhole camera model system, a widely-used mathematical
formulation to correct camera distortions is the Brown-
Conrady model [20] which includes radial and slight tan-
gential distortion.

x′ = xKr + 2s1xy + s2(r
2 + 2x2),

y′ = yKr + s1(r
2 + 2y2) + 2s2xy,

(4)

where r2 = x2 + y2 and

Kr =
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
. (5)

In (4), (x, y) and (x′, y′) stands for the points before and
after the distortion, respectively. k1, k2, k3, k4, k5, and k6 are
radial distortion coefficients. s1 and s2 are tangential distor-
tion coefficients. These coefficients can be easily calculated
by using classical calibration algorithms [21].

Distortion correction is necessary for performing detec-
tion, positioning, and recognition tasks. The distortion cor-
rection process of an image is a non-linear mapping, which
does not bring any new information about the targets as the
differences in pixel density are compensated by interpolation
algorithms. After the stretching, the effective information at

the edge and the center of the corrected image has a huge
gap, as shown in Fig. 4.

Furthermore, the model coefficients for distortion correc-
tion can also be used to evaluate the effective pixel density
obtained by the sensor during the imaging process. The
pixels are stretched in different proportions in the directions
of x and y. Denote x′t, x

′
t+1 as two adjacent pixels after

distortion correction, then |xt−xt+1| represents the original
information provided by the sensor on x direction. According
to (4), the influence of distortion factor can be written as the
derivative of x′, y′. The pixel density is the product of the
distortion factor in the directions of x and y. Therefore, for
camera Ci and target Tj , we use qd to denote the influence
factor of distortion on pixel density.

x′ =
tanβi

j cos γ
i
j

tanαi
,

y′ =
tanβi

j sin γ
i
j

tanαi
,

qd ,
∂x′

∂x

∂y′

∂y
.

(6)

Thus, the influence of different types of lenses can be
described uniformly, no matter how they distort lights. This
constraint indicates that the camera should be configured to
align its optical axis with the object.

Finally, combining (3) and (6) yields a comprehensive
description of the sensing quality for a single camera as

Qj = qpqd > εj . (7)

An illustration of this model is shown in Fig. 5.

B. Multi-Camera Model

To extend the single-camera model to multiple cameras,
some modifications need to be made to take into account
the information fusion. Now consider two cameras Ca, Cb

observe the same target, for example, and Qa, Qb (let Qa <
Qb) denote the actual length represented by the unit pixel
at the target location of the two cameras. Fusing data from
the two cameras allows for more precise measurements than
sensing with a single camera. More specifically, the fused
result is the intersection of the origin range, that is εj ∈
[0, Qa] considering all possibilities of each camera’s relative

(a) Perspective factor (b) Distortion factor (c) Complete model

Fig. 5: The sensing quality on the ground plane by a certain camera mounted at (0, 0, 3000)mm. The XY axis represents the position,
and the lighter the color, the higher the quality.
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Fig. 6: A one-dimensional example for fusion: The task is to
estimate the length of the green line, and the fused result is the
intersection of two cameras with different Qj .

position and focal length. A one-dimensional example for
intuitive demonstration is given in Fig. 6. Suppose that the
overlap between cameras occurs randomly. The expectation
of the error bound can be written as

Qj =
1

1/Qa + 1/Qb
. (8)

Similarly, it can be extended to the camera network of
arbitrary scale. For a camera Ci and a target j, use Vij to
denote the visibility.

V i
j =

{
1, βi

j ≤ αi

0, βi
j > αi.

(9)

Then, the fusion of every cameras’ estimation is written as

Qj =
1∑

Ci∈C V
i
j /Q

i
j

> εj . (10)

C. Optimization

The tasks of a camera network in the real life vary greatly,
resulting in different optimization problems. One of the most
common goals is that each target is covered by the field of
view of at least one camera and the average sensing quality

(a) Perspective factor (b) Distortion factor (c) Complete model

Fig. 5: The sensing quality on the ground plane by a certain camera mounted at (0, 0, 3000)mm. The XY axis represents the position,
and the lighter the color, the higher the quality.

on the proposed sensing quality metric (10) can be written
as

Minimize
1

Nt

∑

Tj∈T
Qj

subject to
∑

Ci∈C
V i
j ≥ 1,∀Tj ∈ T.

(11)

Further, with the formulation of sensing quality, different
optimization problems can be constructed to deal with other
application requirements. For example, we can optimize the
worst-case sensing quality as

Minimize max
Tj∈T

Qj

subject to
∑

Ci∈C
V i
j ≥ 1,∀Tj ∈ T. (12)

Based on (11), Algorithm 1 is proposed for camera net-
work configuration systems. Apparently, Algorithm 1 can be
used to solve (12) with the modification of Line 3.

III. EXPERIMENTAL VALIDATION

A. Simulation

In this section, we provide simulation experiments demon-
strating the claimed strength of proposed sensing quality
model for the reconfiguration of heterogeneous camera net-
works, e.g., PTZ camera networks or drone mode (cameras
carried by unmanned aerial vehicles). In order to evaluate
the visual information and sensing quality, we build a virtual
environment to simulate all the camera views. In the designed
experiment, several robots move randomly on the 5m*3m
floor [22], [23]. Each robot is attached with an individual

Fig. 6: A one-dimensional example for fusion: The task is to
estimate the length of the green line, and the fused result is the
intersection of two cameras with different Qj .

Algorithm 1: Camera Network Configuration
Input: camera angle of view αi, camera distortion

coefficients, camera resolution wi pixels, user
constrains on oi, φi.

Output: optimal camera configuration, targets’
position pj .

1 Initial scan to get targets’ position pj ;
2 while true do
3 Solve the optimization problem (11) and get

oi, φi;
4 for Ci ∈ C do
5 Capture the image of Ci;
6 Run AprilTag detection algorithm to estimate

pj ;
7 end
8 for Tj ∈ T do
9 if target Tj gets more then one estimation

from the camera network then
10 Update pj to the fusion of estimations;
11 end
12 end
13 end

visual fiducial marker AprilTag [24], which facilitates the
vision-based six degrees of freedom robot localization. The
task of the camera network is to obtain the positions of all
the robots as accurately as possible.

Specifically, the robots’ position pj are randomly given
and cameras have fixed mounting position oi and flexible
optical-axis direction φi in the PTZ camera mode, while flex-
ible position oi (minimum height is limited to 1m) but fixed
downward optical-axis direction φi in the drone mode. All
the cameras’ coefficients are calibrated from real cameras.
Our virtual environment generates image corresponding to
the given camera configuration, shown in Fig. 7. AprilTag
detection algorithm is used to estimate the position of robots
according to the images. The optimization problem (11) is
solved by fmincon in MATLAB 2021, which runs on an
AMD Ryzen 5 3600 CPU, 3.60GHz processor and 32GB
RAM. We generate 12 different simulation scenarios and run
10 experiments in each scenario. The results are shown in

Fig. 7: AprilTag detection task in the virtual environment, (left)
image space and (right) world space. The farthest tag was not
detected successfully because it occupied few pixels on the image.

of all targets is maximized. The objective function based on
the proposed sensing quality metric (10) can be written as

Minimize
1

Nt

∑

Tj∈T
Qj

subject to
∑

Ci∈C
V i
j ≥ 1,∀Tj ∈ T.

(11)

Further, with the formulation of sensing quality, different
optimization problems can be constructed to deal with other
application requirements. For example, we can optimize the
worst-case sensing quality as

Minimize max
Tj∈T

Qj

subject to
∑

Ci∈C
V i
j ≥ 1,∀Tj ∈ T. (12)

Based on (11), Algorithm 1 is proposed for camera net-
work configuration systems. Apparently, Algorithm 1 can be
used to solve (12) with the modification of Line 3.

III. PERFORMANCE EVALUATION

A. Simulation

In this section, we provide simulation experiments demon-
strating the claimed strength of proposed sensing quality
model for the reconfiguration of heterogeneous camera net-
works, e.g., PTZ camera networks or drone mode (cameras
carried by unmanned aerial vehicles). In order to evaluate the
sensing quality, we build a virtual environment to simulate all
the camera views. In the designed experiment, several robots
move randomly on the 5m × 3m floor [22], [23]. Each robot
is attached with an individual visual fiducial marker AprilTag
[24], which facilitates the vision-based six degrees of free-
dom robot localization. The task of the camera network is to
obtain the positions of all the robots as accurately as possible.
Specifically, the robots’ position pj are randomly given and
cameras have fixed mounting position oi and flexible optical-
axis direction φi in the PTZ camera mode, while flexible
position oi (minimum height is limited to 1m) but fixed
downward optical-axis direction φi in the drone mode. All
the cameras’ coefficients are calibrated from real cameras.
Our virtual environment generates images corresponding to
the given camera configuration, shown in Fig. 7. AprilTag
detection algorithm is used to estimate the position of robots
according to the images. The optimization problem (11) is
solved by fmincon in MATLAB 2021, which runs on an
AMD Ryzen 5 3600 CPU, 3.60GHz processor and 32GB
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TABLE I: Simulation Results on Multi-Robot Detection

Nc Nt
PTZ Drone

Method Computing Time/s Error/mm Method Computing Time/s Error/mm

3 3
IPOPT 0.684 11.97 IPOPT 0.534 5.13
SQP 0.223 11.85 SQP 0.120 5.67

Arslan’s - 13.56 Arslan’s - 9.71

5 10
IPOPT 1.065 21.96 IPOPT 1.321 14.62
SQP 0.490 25.69 SQP 0.586 17.51

Arslan’s - 47.11 Arslan’s - 22.18

7 20
IPOPT 1.492 23.55 IPOPT 1.915 17.44
SQP 0.720 27.23 SQP 0.746 21.99

Arslan’s - 51.02 Arslan’s - 22.93

* Arslan’s method [16] did not give comparisons on computing time.

(a) PTZ, Nc = 3, Nt = 3 (b) PTZ, Nc = 3, Nt = 9 (c) PTZ, Nc = 5, Nt = 10 (d) PTZ, Nc = 5, Nt = 20

(e) Drone, Nc = 3, Nt = 3 (f) Drone, Nc = 3, Nt = 9 (g) Drone, Nc = 5, Nt = 10 (h) Drone, Nc = 5, Nt = 20

Fig. 8: Simulations for different network scales. The XY axis represents the experiment plane. The Z axis represents the sensing quality,
which has been normalized for better presentation. The targets’ positions are marked with circles.

RAM. We generate 12 different simulation scenarios and run
10 experiments in each scenario. The results are shown in
Fig. 8 and Table I.

First, the average errors of the PTZ camera systems are
larger than that of the drone camera systems. This is because
the fixed positions of the PTZ cameras lead to more serious
distortion of the sight when monitoring robots at a large rel-
ative angle, while drones can fly directly above the robots to
get a sight with better sensing quality. Besides, we compare
the performance of the two algorithms, i.e., Interior Point
OPTimizer (IPOPT) and Sequential Quadratic Programming
(SQP). The results show that SQP computes faster with larger
error. Moreover, the sensing quality model in [16] is used
for comparison. It is obvious that our model achieves more
accurate localization since our model incorporates the effects
of distortion. Lastly, as the numbers of cameras and targets
increase, the average computing time increases too due to
the increasing complexity of the optimization problem, and
it becomes harder to find a global optimal solution.

B. Experiment

To experimentally validate the proposed model, we set up
a 3m (width) × 5m (length) × 2.5m (height) rectangular box-
shaped environment with three self-build interchangeable-
lens PTZ cameras mounted on the ceiling, the intrinsic and

extrinsic coefficients of which are pre-calibrated. We set sev-
eral Omni-directional robots attached with AprilTags moving
on the ground as sensing targets. The cameras’ positions are
fixed, and the optical-axis directions perform as optimization
variables, limited by PTZ cameras’ physical properties. Since
the estimation of the depth depends on the size of the tags in
the image, this experiment can examine both the positioning
and measurement ability simultaneously. The ground truth of
the robots’ positions is given by manual measurement with
laser rangefinder. Our algorithm will give an optimal camera
configuration for sensing quality, as shown in Fig. 9 and
video (https://youtu.be/5Uies1RrC-0).

We first use manual configuration of the cameras to
cover all the robots and get the average error. Then, the
configuration are set according to Algorithm 1. The average
Q is 1.165 and average error decreased by 37.0%, down to
35.3. Finally, we use sensing model proposed by [16] as
another comparison. The results are shown in Table II.

TABLE II: Experimental Results on Multi-Robot Detection

Method Average Q Average Error/mm
Manual Setting 1.610 56.0

Our Method 1.165 35.3
Arslan’s [16] 1.482 37.2
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(a) Experiment Overview (b) Camera 1 View

(c) Camera 2 View (d) Camera 3 View

Fig. 9: Experimental demonstration of camera network configuration for optimal sensing quality. (left) Top view of the environment and
visualization of a optimal configuration for certain situation. (a) Three PTZ cameras mounted on the ceiling. (b)(c)(d) The camera view
with the optimized configuration.

IV. CONCLUSION

In this paper, we considered the balance between the
coverage for all targets and sensing quality of each single
one for a camera network. The problem has been formu-
lated as an optimization problem which takes into account
the perspective, distortion factor and multi-camera fusion
results. Optimal configuration for camera network can be
achieved without modeling the environment, suitable for any
pre-calibrated cameras and targets anywhere in 3D space.
The proposed method demonstrates superior performance
as compared to previous approaches, increasing the average
accuracy in AprilTag detection task by 38.9%.

We would like to introduce some potential research direc-
tions: i) developing optimization approach for online tracking
and large-scale problems, ii) optimizing sensing quality while
taking the surveillance of unknown areas into account, and
iii) developing a refined model for objects which need to be
tracked from a certain direction.
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