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a b s t r a c t

Obtaining accurate and real-time value of the pollution concentration is fundamental to effective
and energy-saving operation for pollution controlling in coal-fired power plants. However, accurate
measurements for NOx concentration cannot be guaranteed, due to the intrinsic hardware and software
design in sensors. In this paper, a prediction method, including variables processing and model
regression, is proposed for NOx concentration measurement. Specifically, a set of variables is firstly
selected adaptively as an input set by using modified transfer entropy (TE), while the relationships
among them are guaranteed to be as weak as possible. Then, the input set can cover features without
introducing redundant information to the prediction model , and the system delay is reduced based on
the TE and sequential displacement. After the variables are processed, a forgetting factor online least
square support vector machine (FFOLSSVM) is constructed to predict NOx concentration timely and
accurately. The proposed method is the first work that takes the system delay into consideration for
NOx prediction model, without mechanism analysis. The simulation indicates that the computational
time and prediction accuracy requirements are sufficiently guaranteed by the proposed model.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing concerns about environmental pollution
and energy conservation, the clean and efficient utilization of coal
in power plants has become an important issue. For example,
governmental authorities have set a series of strict regulations
on pollutant emissions of power plants [1]. Among the pollutant
reduction procedures, efficient denitration is extremely challeng-
ing for the power station. Currently, Selective Catalytic Reduc-
tion (SCR) is a popular flue gas denitration technology , for its
environment-friendly reaction process, simple device structure,
and high denitration efficiency (up to 90%) [2]. Even though SCR
technology is satisfying, there are still some noticeable draw-
backs in the denitration procedure, mainly introduced by the
control system. The current Continuous Emission Monitoring Sys-
tem (CEMS) cannot monitor NOx concentration accurately, timely,
and continuously. A control system cannot operate properly with-
out accurate and in-time feedback. CEMS also needs frequent
maintenance for its vulnerability and instability, incurring high
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costs [3]. Therefore, how to measure NOx accurately, timely, and
continuously is a critical issue that needs to be tackled.

Fortunately, with the development of machine learning and
big data technology, new methods are proposed and widely used
in many fields [4–7]. Among those methods, a new method of
measurement – soft sensor – has been put forth. Soft sensor
methods have shown the potential to satisfy the requirement for
measurement in practical application [8]. As a consequence, how
to find suitable input variables and determine a proper model is
crucial for excellent prediction performance.

As for selecting input variables, there are mainly two meth-
ods: filter-type and wrapper-type. Although the former reduces
the number of variables based on mutual information, it ig-
nores to avoid introducing redundant features into the soft sensor
and thus lowers the prediction accuracy [9,10]. Jie et al. [11]
proposed a wrapper-type method using Monte-Carlo uninfor-
mative variable elimination to remove redundant information.
The wrapper-type selection considers the maximum accuracy as
the goal in variable selection, it is quite difficult to implement
in practical applications and easily leads to over-fit for its high
computational complexity [12].

After the input variables are selected, a regression model is
needed for prediction. The model used in the soft sensor is varied,
such as artificial neural networks (ANNs) and support vector
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machines (SVMs). However, the ANN model in the work [13] for
prediction does not have enough accuracy for practical applica-
tion. The SVM may suffer from high computational complexity
and over-fitting [14] . These issues can be addressed by using
the Least Squares SVM (LSSVM) proposed in [15]. The LSSVM
technique has been widely applied in power plants. Lv et al. [16,
17] constructed LSSVM models to predict the NOx emissions
of a coal-fired boiler; also, in a later study, they used LSSVM
models to predict the bed temperature of circulating fluidized bed
boilers [18]. Furthermore, Gu et al. [19] used LSSVM to develop a
boiler combustion model for operation optimization.

Note in NOx prediction, the main challenge is how to select
a good input variable set. The input variables must be chosen
from the process, which is related to the production of NOx.
NOx is derived from the combustion process of fossil fuels and
generated in the coal-fired boiler. Thus, the input variables are
the measurement points of these processes, which can indicate
the working condition of the furnace. State-of-the-art presented
several NOx prediction methods based on the input mentioned
above variables and showed us good results [16,17,20,21].

However, there are mainly three drawbacks in these work.
First, the fact is overlooked that the working conditions are dif-
ferent from time to time (e.g., different operation habits of oper-
ators). Thus, the input variable set should be adjusted according
to the different conditions. From the aspect of the prediction
model, Zhou et al. [20] presented an efficient NOx emissions
model based on support vector regression (SVR) and compared
its performance with traditional modeling techniques, i.e., back-
propagation (BPNN) and generalized regression (GRNN) neural
network. The model achieved an accurate and fast computa-
tion result and covered a large range of working conditions.
Lv et al. [16] considered real operation data of power plants
are inclined to be concentrated in some local areas because of
the operators’ habits and control system design, proposed a soft
fuzzy c-means cluster algorithm based LSSVM. Second, these
work ignored that the denitration system has large time-delay
characteristics, and the variables from different measurement
points with the same time-tag could not indicate the same se-
quential process. The delay1 can lead to low prediction accuracy.
And the prediction accuracy in their work does not satisfy the
requirement of the practical application; only about 70% of the
testing samples have a relative error below 5%. For instance,
Tan et al. [21] proposed a methodology combining the advanced
extreme learning machine (ELM) and harmony search (HS). The
model has excellent performance in both accuracy and speed.
However, the whole process in their works is off-line without
updates. In practice, we believe the initial training samples can-
not cover all the conditions, which could lead to low accuracy.
Hence, the soft sensor should have the update procedure to fit
the measurement requirement. To design an on-line model, Lv
et al. [17] proposed an update strategy of dividing the process
variations into irreversible and reversible ones to improve the
performance of the model in long-term prediction. Third, the
computation speed of the model could be extremely slow when
the parameters of the update strategy are not optimized. As
mentioned above, the variation of the working conditions could
not guarantee the rationality of the previous parameters. The
model needs to search for new parameters during the update
procedure, which is time-consuming. Also, even if the parameters
are optimized, the LSSVM model will introduce more and more
data while the on-line prediction progress is running, which will
increase computational complexity and even cause the system to
halt. Even so, the method in [17] is the most practical one for
now.

1 The definition and explanation of the delay in this paper are shown in 3.1.3.

In this paper, to develop a practical application-oriented NOx
prediction method for long-term use, we solve the problems
in input variables selection and on-line prediction model. First,
the input variables are selected according to the cause–effect
relationship analyzed by the real data instead of mechanism-
based one. Thus, the selection method selects the variables which
can cover a large proportion of features of the current operat-
ing characteristics. Compared with mechanism-based selection,
the proposed method is more reasonable for a dynamic model.
Along with the selection, time delays between variables are de-
tected, and the sequences of variables are aligned to eliminate
the influence of delays. Second, based on LSSVM, an on-line
model is constructed to decrease the frequency of retraining
and parameter-optimizing by adapting the iteration approach.
Finally, the prediction based on real data shows that the pro-
posed method can fully satisfy the requirement of the practical
application.

For practical application, the novelties of the work are as
follows:

1. To our best knowledge, this is the first time to identify
time delay between variables and introduce the time de-
lay to dissect and amend the practical prediction method
by TE. This critical consideration improves the generaliza-
tion ability of the method and satisfies the requirement of
computational time for the practical application.

2. We propose an efficient prediction method including data
preprocessing (input variable selection and sequential dis-
placement) and on-line prediction model for long-term
NOx concentration prediction, satisfying the requirement
of computational speed, prediction accuracy, and stability
for different systems.

3. The cause–effect relationship depicted by TE is proposed
as the criteria, and the HITS algorithm is migrated into the
process for input variable selection. The data-driven selec-
tion method provides a new idea to get the best possible
solution for performance improvement.

4. We design a new iterative approach based on LSSVM,
which only searches weights in the initial stage. The pro-
posed approach reduces the time complexity of weighs-
update by introducing iteration algorithm and guarantees
the prediction speed and accuracy simultaneously.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces preliminaries related to the proposed soft sen-
sor method. In Section 3, we present the approach in detail.
Then Section 4 provides a simulation based on real data. Sec-
tion 5 presents the results, and Section 6 presents the discussion.
Finally, Section 7 concludes the paper.

2. Preliminary

In this section, we introduce some preliminaries about input
variable selection and the LSSVM model.

2.1. Input variable processing

TE is a non-parametric measure that estimates the directed in-
formation flow among stochastic processes to detect cause–effect
between variables [22,23]. Wu et al. [24] analyzed the influence
of five nonlinear transformations on TE and introduced the TE for
nonlinear transformation. Hu et al. [25] introduced normalized TE
and normalized direct TE to consider random delays and mutual
independence among variables.
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2.1.1. Transfer entropy
We suppose a system X , and it contains a series of possible

events whose probabilities of occurrence is p(x), and then the
Shannon entropy reads:

H = −
∑
x

p(x)log2p(x). (1)

The Shannon entropy shows the average uncertainty of the sys-
tem X and quantifies the average number of bits needed to
encode the system X . Shannon entropy provides an absolute
limit on the best possible average length of lossless encoding or
compression of an information source. Then, Shannon entropy for
two systems can be expressed as:

H1 = −
∑
x,y

p(x, y)log2p(x, y). (2)

TE is introduced based on Shannon entropy. We can suppose
two systems which generates events: X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn} with the same length of n. The definition of
TE from X to Y in [24] is shown as

TX→Y =
∑

yn,yn−1,xn−1

p(yn, yn−1, xn−1)log2
p(yn|yn−1, xn−1)

p(yn|yn−1)
. (3)

TE from X to Y indicates the entropy change of Y , which
caused by X . So, we can measure the cause–effect relationship
by TE.

2.1.2. Hyperlink-induced topic search
However, the TE values of the variables cannot be directly used

to indicate the authority of each variable in the whole system,
nor choose variables for input set, for some variables could be
dramatically influenced by others, and sometimes could be the
same value. Even though they have a significant impact on the
system’s output, one of them is redundant. Such variables are
not suitable for being the input variables of the prediction model,
which lead to the poor performance of the soft sensor.

Thus, according to the graph theory and the authority mea-
surement for Internet vertex, we use HITS to evaluate the vari-
ables. HITS, which is also known as Hubs and Authorities, is a
link analysis algorithm that rates Web pages; it was developed
by Jon Kleinberg [26]. HITS algorithm is easy to compute and can
be migrated to evaluate vertex in system [27].

Assuming G = (V , E) is a directed graph, and then, the link
matrix A of the graph G is a n× n asymmetric matrix.

A(u, v) =
{

1, (u, v) ∈ E
0, (u, v) /∈ E . (4)

The authority a(v), the hub h(u), and link matrix A have the
following relationships

a(v) =
∑
u

AT(v, u) · h(u)

h(u) =
∑

v

A(v, u) · a(u).
(5)

Thus, the recursion formula is

ak = AThk−1 = AT(Aak−1) = (ATA)Ak−1

hk = Aak−1 = A(AThk−1) = (AAT)hk−1
. (6)

When k → ∞, the authority a converges to the main eigen-
vector of ATA. The hub h converges to the main eigenvector of
AAT.

2.2. Prediction model

Assuming {xk, yk}nk=1 is training sample set, where xk ∈ Rd and
yk ∈ R, d is the number of input variables. The LSSVM regression
model can be provided as follows

f (x) = wTϕ (xk)+ b, (7)

where ϕ (•) is a nonlinear function mapping input variables from
the original space into a high feature space, w is a weight vector,
and b is a bias.

The squared errors are used as the cost function according to
the SRM principle. The LSSVM model can then be developed by
using the following formulation:

min J(w, e) = wTw+
γ

2

n∑
k=1

e2k

s.t. f (x) = wTϕ (xk)+ b+ ek

, (8)

where γ is a penalty parameter that balances model complexity
and approximation accuracy, ek is the kth error variable. Then, by
using the Lagrangian method, the optimization problem can be
converted into a group of linear equations:

L (w, γ , e, α, b) =
1
2
wTw+

γ

2

n∑
k=1

e2k

+

n∑
k=1

αk
(
yk −wTϕ (xk)+ b+ ek

)
, (9)

where αk(k = 1, 2, . . . , n) is the Lagrangian multiplier vector. The
solutions for optimality are obtained based on the KKT conditions.
And we set K (x, xi) = ϕ(x)Tϕ(xi).

Finally, the LSSVM regression model can be obtained as fol-
lows:

y (x) =
n∑

k=1

αkK (x, xk)+ b. (10)

3. The proposed method

In this section, the modifications to the preliminary that forms
the soft sensor method are represented. First, the variable pro-
cessing approach is introduced.

3.1. Variable processing

As we mentioned above, the input variables are processed
according to the cause–effect relationship and the time delay,
which are measured by a modified TE method.

3.1.1. Modified TE
Because the soft sensor is built to predict the NOx concentra-

tion, the time-delay and non-Markovian characteristics in plant
boiler system need to be considered when analyzing the cause–
effect relationship between variables.

We calculate the TE between the current observation and
the previous one to obtain the time delay between variables.
Thus, the parameter τ is embedded in (3), and the following
modifications considering the non-Markovian characteristics are
also introduced into TE.

x(k)
n = [xn, xn−τ , . . . , xn−(k−1)τ ]

y(l)
n = [yn, yn−τ , . . . , yn−(l−1)τ ]

, (11)

where k and l are related to the Markov property of system X
and system Y . Theoretically, k and l are set to 1 if the systems
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are non-Markovian. Therefore, the embedded TE is defined as
follows

TX→Y =
∑

yn,y(l)
n−1,x(k)

n−1

p(yn, y
(l)
n−1, x

(k)
n−1)log2

p(yn|y
(l)
n−1, x

(k)
n−1)

p(yn|y
(l)
n−1)

. (12)

As it is shown in (12), the TE is practically calculated by binary
data, and then, we change the variables of the system into 0–1
type. For a complex nonlinear system, we assume it contains a
discrete sequence X = [x1, x2, . . . xn] with the length of n. There
are two complementary events: whether the value fluctuation
exceeds a certain range or not, as

x̃j =
{

1, if |xi − xi−1| ≥ δ,j = i
0, otherwise , (13)

where xi is the value of X at the time i, δ is the parameter
of the fluctuation range, x̃j is the value of the new sequence
at the time j. X can be binarized into a new sequence X̃ . As
for two variables, they have to be normalized before binarized
to eliminate numerical differences. Considering that there exists
random delay between variables in the system, thus, x(k)

n and y(l)
n

are modified as follows

x̃(k)n =

{
∪

n
i=n−k+1xi, ifyn+1 = 1

xn, otherwise

ỹ(l)
n =

{
∪

n
i=n−l+1yi, ifyn+1 = 1

yn, otherwise

, (14)

where ∪ is the symbol of the union of binary variables. Overall
the modified TE for complex nonlinear systems is shown as

TX→Y =
∑

yn,ỹ(l)
n−1,x̃(k)

n−1

p(yn, ỹ
(l)
n−1, x̃

(k)
n−1)log2

p(yn|ỹ
(l)
n−1, x̃

(k)
n−1)

p(yn|ỹ
(l)
n−1)

. (15)

The results of TE of two variables are T X→Y
t+l−1 and T Y→X

t+l−1, where
t+ l−1 = 1, 2, . . . , n. T X→Y

t+l−1 indicates the TE from X to Y under
the parameter t and l. The mutation value of T X→Y

t+l−1 is the transfer
entropy from X to Y , the parameter t + l − 1 is the time delay,
and vice versa.

However, there could be unrelated variable pairs and the
variables with the same value. Thus, we design an algorithm to
find the relationships mentioned above. The algorithm 12 shows
the procedure of finding the relationship between variables.

The algorithm shows the relationship between two variables.
Further, if two variables have a cause–effect relationship, the
algorithm also provides the cause–effect relation strength and the
time delay from one to the other.

3.1.2. Input variable selection
According to the results calculated from Algorithm 1, the vari-

ables which unrelated to the output variable, and the variables
which are the same as others are deleted from the candidates
(where input variables are chosen from). Then we start to se-
lect input variables. According to the graph theory, the vertexes
are the candidate variables; the initial value a0 is the TEs from
candidate variables to the output variable.

Assuming X i, where i = 1, 2, . . . , n, are the variables of
system. Xn is the output variable, the others are candidates. A
n − 1 × n − 1 asymmetric matrix is constructed based on the
results of Algorithm 1 and according to (4).

A(i, j) =
{

CX i→X j , i ̸= j, i < n, j < n
0, i = j, i < n, j < n . (16)

2 0 is assigned to indicate that there is no relationship nor time delay in that
direction; the algorithm of drawing upper envelope is referred to [28].

Algorithm 1: Extract Relationships form TE Results
Input: T X→Y

t+l−1, T
Y→X
t+l−1, parameter ε1 and parameter ε2.

Output: Cause–effect strength from X to Y CX→Y , Cause–effect
strength from Y to X CY→X , The time delay from X to Y
DX→Y , The time delay from Y to X DY→X , Same variable flag
Flag .

if Pearson correlation coefficient of T X→Y
t+l−1 and T Y→X

t+l−1 > ε1 then
Flag ← 1 (the same variables);

else
Flag ← 0 (not the same variables);

end
if Flag = 0 then

PX→Y
← Pearson correlation coefficient of the upper envelope of

T X→Y
t+l−1 and the line y = 1;

PY→X
← Pearson correlation coefficient of the upper envelope of

T Y→X
t+l−1 and the line y = 1;

if PX→Y > ε2 then
CX→Y ← 0,DX→Y ← 0;

else
CX→Y ← max(T X→Y

t+l−1),DX→Y ← t + l− 1 under max(T X→Y
t+l−1);

end
if PY→X > ε2 then

CY→X ← 0,DY→X ← 0;
else

CY→X ← max(T Y→X
t+l−1),DY→X ← t + l− 1 under max(T Y→X

t+l−1);
end

end
return CX→Y ,CY→X ,DX→Y ,DY→X ,Flag

The initial authority a0 indicates the influence from the other
variables to the output variable, which consisted as

a0(i) = CX i→Xn , i < n. (17)

According to (6), after the iteration, we can obtain the au-
thority a and hub h. During the iteration, to overcome numerical
overflow, the vectors are divided by their maximum elements of
each step.

The independent correlation index (ICI) can be obtained as

I =
a0

h
/
∑ a0(i)

h(i)
, i < n. (18)

The variable that has a high rank in the index indicates that the
variable has a stronger cause–effect relationship with the output
variable, in the meantime has a weaker relationship with other
variables. High-rank variable is more suitable for being an input
variable. Based on ICI rank, we choose the input variable set.

3.1.3. Sequence adjustment
We suppose the time for an object moving from inlet to outlet

is τ s, the resolution of the record device is 1s. The observations
of the inlet and outlet are two discrete-time variables I and O.
I = [I1, I2, . . . , In]
O = [O1,O2, . . . ,On]

. (19)

The observation of the same object at inlet and outlet is It
and Ot+τ , respectively. In other words, the delay between these
two variables is τ s. To reduce the delays, we need to adjust the
sequences. We displace the sequences to be aligned and get Inew
and Onew as

Inew = [I1, I2, . . . , In−τ ]

Onew = [O1+τ ,O2+τ , . . . ,On]
. (20)

For now, the variable processing procedure is completed.
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3.2. FFOLSSVM

Another part of the soft sensor is the prediction model. We
propose an FFOLSSVM (forgetting factor online least square sup-
port vector machine) model to consider the change of the perfor-
mance caused by the variation of new input data.

3.2.1. LSSVM based iteration approach
LSSVM uses training samples to predict new samples. The ac-

curacy depends on the weights which are trained by the optimiz-
ing algorithms. However, the training stage is time-consuming.
Therefore we design an approach to change the weights according
to the last prediction error instead of retraining based on new
training samples. The approach obtains prediction value while
updating weights.

First, we modify (10), so the model can function using the
iteration approach.

y (x) =
n∑

k=1

αkK (x, xk)+ b

=

n∑
k=1

βkK (x, xk) = Kβ

, (21)

where β = K+(Kα+b), K+ is generalized inverse of K . β could be
several values, but it would not influence the following equations.

In this study, Gaussian kernel function is selected as kernel
function.

K (x, xk) = exp
(
−∥x− xk∥2 /σ 2). (22)

At initial stage,

β0 = K−10 y0 = (K T
0K 0)−1K T

0y0, (23)

where K 0 is calculated by initial training samples. To keep K T
0K 0

being non-singular, regularization parameter is introduced. K T
0K 0

is transformed as

K T
0K 0 +

1
C

s.t.min
β0

{K 0β0 − y0
+ β0

2

C

}
. (24)

For Z0 = K T
0K 0 +

1
C

Moreover, we have

β0 = Z0
−1K T

0y0. (25)

When a new sample is introduced into the model, K 1 is
constructed based on a new sample.

β1 = Z1
−1

[
K 0
K 1

]T [
y0
y1

]
, (26)

and,

Z1 =
I
C +

[
K 0
K 1

]T [
K 0
K 1

]
= Z0 + K T

1K 1 . (27)

Transform
[

K 0
K 1

]T [
y0
y1

]
as

[
K 0
K 1

]T [
y0
y1

]
= K T

0y0 + K T
1y1 = Z0Z−10 K T

0y0 + K T
1y1

= Z0β0 + K T
1y1 = (Z1 − K T

1K 1)β0 + K T
1y1

= Z1β0 − K T
1K 1β0 + K T

1y1

, (28)

and,

β1 = β0 + Z−11 K T
1(y1 − K 1β0). (29)

Therefore, we have

Z−1k+1 = (Zk + K T
k+1K k+1)−1

βk+1 = βk + Z−1k+1K
T
k+1(yk+1 − K k+1βk)

. (30)

Because Z−1k+1 is difficult to calculate, we simplify it and get

Z−1k+1 = (Zk + K T
k+1K k+1)−1 = Z−1k −

Z−1k K T
k+1K k+1Z−1k

I + K k+1Z−1k K T
k+1

. (31)

We set Pk = Z−1k , and get

Pk+1 = Pk −
PkK T

k+1K k+1Pk

I + K k+1PkK T
k+1

, (32)

and,

βk+1 = βk + Pk+1K T
k+1(yk+1 − K k+1βk). (33)

For the time-varying system, the current operation condition
can be changed dramatically. Consequently, the output value
drastically changes. The weights of the prediction model should
be adjusted. Therefore, the forgetting factor of weights is added
in the algorithm. The forgetting factor is updated based on the
error of the prediction, which is particularly sensitive to new data
[29].

βk+1 = βk +
Pk+1K T

k+1

1+ξk+1
êk+1, (34)

where

êk+1 = yk+1 − K k+1βk, (35)

and,

ξk+1 = K k+1PkK T
k+1, (36)

where ξk+1 is the error of new sample based on βk. ξk+1 is the
update flag, if ξk+1= 0, then Pk+1 = Pk. If ξk+1> 0, then (32) is
transformed as

Pk+1 = Pk −
PkK T

k+1K k+1Pk

ε−1k+1 + ξk+1
, (37)

where

εk+1 = λk −
1− λk

ξk+1
. (38)

λk is the forgetting factor, 0 < λk ≤ 1. The expression of the
λk+1 is shown as

λk+1 =

{
1+ (1+ ρ)

[
ln(1+ ξk+1)

+

(
(νk+1 + 1) ηk+1

1+ ξk+1 + ηk+1
− 1

)
ξk+1

1+ ξk+1

]}−1
, (39)

where

ηk+1 =
ê2k+1
ζk+1

ζk+1 = λk(ζk +
ê2k+1

1+ξk+1
)

νk+1 = λk(νk + 1)

, (40)

where ρ is a fixed number, initial ζ and ν are between 0 and 1.
Therefore, the LSSVM based iteration approach is shown as

ˆyk+1 = βk+1K k+1, (41)

where ˆyk+1 is the prediction value.
The aAlgorithm 23 illustrates the LSSVM based iteration ap-

proach.

3 In this paper, the parameters of Algorithm 2 are set as λ0= 0.1,
ζ0= 1,ν0= 0.1,ρ= 25.
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Algorithm 2: LSSVM based Iteration Approach
Input: λ0,ζ0,ν0, ρ,C ,σ , initial data Dinitial, following data Dfollowing .
Output: Prediction value y.
Initialize: Train the traditional LSSVM model based on Dinitial, and get
β in (21);
Calculate K 0, β0, P0 based on Dinitial;
k← 0;
while k < length (Dfollowing ) do

Calculate K k+1 βk+1, ξk+1, εk+1 based on (k+1)th Dfollowing ;
if ξk+1= 0 then

Pk+1 ← Pk
else

Pk+1 ← Pk −
PkKT

k+1K k+1Pk

ε−1k+1+ξk+1

end
Calculate ηk+1, ζk+1 and νk+1;
k← k+1;
yk+1 ← K k+1βk+1;
return yk+1

end

3.2.2. Update strategy
The LSSVM based iteration approach uses the initial training

samples for the whole progress. When the initial data no longer
covers the current condition, we will not get the excellent accu-
racy of the prediction model. Thus, we propose an update strategy
to renew the input samples of the kernel function, so it is one kind
of the kernel update.

This study draws on the idea of on-line updating data in [17]
and proposes an on-line update prediction model based on pre-
diction error, which discards some old samples according to
prediction error, adds the same number of new samples to update
training samples, and keep the dimension of the kernel matrix.
This procedure satisfies both calculating speed and prediction
accuracy.

Define the prediction error as the deviation between the pre-
diction value and the actual one.

ei = yi − ỹi, (42)

where yi, ỹi and ei is the actual value, the prediction value and
the prediction error at the time i, respectively.

The average prediction error of the model is defined as

eave =
m∑
i=1

ei
m

, (43)

where m is the number of the training samples.
A sliding window is established, and the average prediction

error is used to determine whether the model should be updated.
The flowchart of the update strategy is shown in Fig. 1.

n sets of training samples whose errors are higher than the
threshold are inserted in the sliding window. n sets of training
samples with the smallest Lagrange value (9) are deleted at the
same time. Then the traditional LSSVM is retained; after that,
the iterative approach is activated until it no longer satisfies
the prediction accuracy. It can avoid deleting significant samples
during retraining.

Compared with the study in [17], the approach updating is
triggered by the average error. The error of the individual sample
guides the adding/deleting of the samples, which is more aimed
at the accuracy requirement. The strategy does not need frequent
updates because of the forgotten factor and iterative algorithm.
The number of training samples of the model is always the same
in this study, and the size of the matrix of the model is not
changed, which helps the stable operation of the computer, and
reduces the computational cost.

Fig. 1. Flowchart of the approach update strategy.

4. Nox prediction method based on real data

In this section, the NOx concentration of SCR reactor inlet of a
600 MW coal-fired unit in Inner Mongolia, China is used as a fore-
casting object. The real data with the resolution of 1s is retrieved
from DCS for 201 600 s to conduct prediction experiments. 33
000 s of data is used to illustrate the result.

4.1. Brief description of the investigated power plant

The investigated power plant is a typical coal-fired boiler,
which has a large furnace with a 19.08 m× 19.08 m cross-section
and a 65.1 m height. Six medium-speed pulverizers are used to
supply pulverized coal, which is then mixed with the primary
air and blown into the furnace through the burner nozzles. An
imaginary horizontal circle with a 7.69 m diameter is then formed
in the center. Six layers of primary air (A, B, C, D, E, and F)
and eight layers of input air (AA, AB, BC, CC, DD, DE, EF, and
FF) are distributed alternately in a vertical direction. Six layers
of circumferential air (A–F) are arranged to surround the burner
nozzles to supply sufficient air and guarantee the combustion
stability. Four layers of overfire air (OFA) are installed over the
upper nozzles to replenish the air in the later combustion phase
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Fig. 2. The schematic diagram of the furnace and burner layout.

Fig. 3. The flowchart of the soft sensor method for NOx emission.

for better combustion efficiency. The schematic diagram of the
furnace and burner layout is shown in Fig. 2.

4.2. Nox concentration prediction

The flowchart of the soft sensor method for NOx emission is
shown in Fig. 3.

4.2.1. Retrieve data from DCS
The real data retrieved from DCS is included as follows.

• 78 variables from the boiler;
• 8 variables from the turbine;
• 21 variables from the reactor and flue.

There are 106 candidate variables in total, and the output
variable: the NOx concentration of the SCR reactor inlet. Because
the data has already been smoothed by DCS, it can be used
directly for the soft sensor.

The data cover a broad range of the operation condition, and
the variation of a part of variables is shown in Table 1.

4.2.2. Calculate TE
All the variables, including output variable, are paired in groups

of two, and their TEs are calculated to obtain the results of time
delay and cause–effect strength.

Table 1
Part of process variables and their ranges of the investigated boiler in the
operation condition.
Variables Unit Variation

range
Standard
deviation

Variables from boiler MW [333.8 605.9] 80.0Boiler load
Total air rate m3/h [1078.9

1862.7]
205.8

Circumferential air A % [8.2 46.5] 12.5
Over fire air A % [0.0 100.0] 28.0
Total coal rate t/h [151.4 328.4] 39.7
Variables from the turbine Kpa [16.1 139.0] 23.6Pressure of main steam
Temperature of main steam ◦C [526.6 548.1] 2.2Variables from the reactor and flue
NOx concentration of SCR inlet mg/m3 [201.5 431.8] 27.5
The proportion of O2 in flue % [1.6 4.1] 0.6

Table 2
A part of input variables with high ICI.
NO. Variables ICI

1 The current of mill A 5.00
2 The deflection secondary air at level EF 4.98
3 The differential pressure at A side of the hearth 4.92
4 The current of mill C 4.65
5 The current of mill D 4.577
6 The deflection secondary air at level CD 4.552
7 The despun secondary air at level FF 4.519
8 The differential pressure at B side of the hearth 4.112
9 The despun secondary air at level OFA 4.110
10 The deflection secondary air at level DE 3.797

First, according to (13), discrete data should be binarized.
The process of NOx concentration and boiler load is shown as
an illustration. Fig. 4 shows the binarized process, the data is
normalized by mapping into [0,1], and the parameter δ is set to
0.1.

The TE (15) between NOx concentration and boiler load is
shown in Fig. 5. The parameters k and l are set to 15 and 5
respectively. t + l− 1 is from 1 to 600 s.

Then we obtain the cause–effect relation strength and time
delay based on Algorithm 1.

4.2.3. Delete variables
Some variables from the 106 candidate variables are deleted.

The deletion principle of the variables is as follows:

1. The variables are irrelevant (no cause–effect strength, C=0
in Algorithm 1) and redundant (same variable of others,
flag=1 in Algorithm 1).

2. The time delay ranges from the output variable to the
candidate one.

Principle 1 guarantees that the remain candidates all have a
relationship with the output variable, and keep the number of
the candidates as low as possible. Principle 2 guarantees that the
remain candidates are the possible cause of the output variable.
The principles help reduce the computational cost for the next
step.

After deleting, there are 53 variables left for further selection.

4.2.4. Select variables
Among the remaining 53 variables, many variables are strongly

correlated, such as coal-mill current and coal flow. Because mul-
tiple variables influence coal flow, and the coal mill current can
directly reflect the coal flow without being influenced, so the coal
mill current is more representative than others. HITS is used to
obtain ICI, which is shown in Fig. 6.
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Fig. 4. The process of NOx concentration and boiler load.

Fig. 5. TE calculation between boiler load and NOx.

Fig. 6. ICI of input variables.

In this paper, the first ten variables are selected as input
variables to predict NOx through the prediction model.

TE results of the ten selected variables are shown in Table 2.
The numbers in the first column and row are the same as that in
Table 3 to present different input variables.

As shown in Table 3, the cause–effect strengths between input
variables are all 0, which indicate that there are no cause–effect
relationships between input variables. There still exist cause–
effect relationships between input variables and output variable.

The time delay between variables are shown in Table 4.
According to the study in [30], the coal volume makes the

most contribution to the NOx concentration. The coal is delivered

Table 3
TE results of selected variables.
TEcolumn→row 1 2 3 4 5 6 7 8 9 10 NOx
(×10−2)

1 0 0 0 0 0 0 0 0 0 0 4.838
2 0 0 0 0 0 0 0 0 0 0 5.474
3 0 0 0 0 0 0 0 0 0 0 4.478
4 0 0 0 0 0 0 0 0 0 0 4.426
5 0 0 0 0 0 0 0 0 0 0 4.327
6 0 0 0 0 0 0 0 0 0 0 3.765
7 0 0 0 0 0 0 0 0 0 0 4.655
8 0 0 0 0 0 0 0 0 0 0 5.082
9 0 0 0 0 0 0 0 0 0 0 4.979
10 0 0 0 0 0 0 0 0 0 0 4.155

into the furnace by the mill, and the current of the mill directly
reflects the coal volume. The different mills are installed at differ-
ent places of the furnace. Moreover, in the practical application,
not all the mill keeps operating. Thus, only three mills selected
as input variables. In [31], secondary airs are found out to be the
great contributors to the NOx by combustion mechanism analysis
and experiments. The contributions of secondary airs at different
levels are varied. Thus, it is reasonable for the method to select
secondary air as input variables. The differential pressures of the
two sides of the hearth reflect the pressure in the furnace. It was
pointed out that the surrounding pressure rise speed and NOx
emissions exhibit similar tendencies [32]. Thus, the differential
pressures are the cause of NOx.
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Table 4
The time delay between input variables and output variable.

NO. Variables Time delay to
output variable (s)

1 The current of mill A 341
2 The deflection secondary air at level EF 299
3 The differential pressure at A side of the hearth 325
4 The current of mill C 337
5 The current of mill D 330
6 The deflection secondary air at level CD 305
7 The despun secondary air at level FF 308
8 The differential pressure at B side of the hearth 267
9 The despun secondary air at level OFA 323
10 The deflection secondary air at level DE 333

Fig. 7. The sequence adjustment of A-side.

4.2.5. Adjust sequence
The selected input variables and output variables are adjusted

based on the calculated time delays in Table 4. As it is illustrated
in Table 4, the time delay between differential pressure at A side
of the hearth (A-side for convenience) and NOx concentration is
325 s, which means the current operation of A-side cause the
respond of NOx in 325 s later. Thus, we displace the sequence of
A-side for a 325s-delay. Fig. 7 shows the process of adjustment
for A-side.

4.2.6. Build prediction model
The prediction model is built based on real data. The structure

of the model is shown in Fig. 8.
Based on the proposed method, we select some input vari-

ables, namely the current of mill, the deflection secondary air at
level EF, the differential pressure at A side of the hearth, the cur-
rent of mill C, the current of mill D, the deflection secondary air
at level CD, the despun secondary air at level FF, the differential
pressure at B side of the hearth, the despun secondary air at level
OFA and the deflection secondary air at level DE. The prediction
model calculates the NOx concentration based on those secondary
variables.

5. Results of NOx prediction

In this section, two experiments are carried out to testify

1. Viability and effectiveness of the proposed variable pro-
cessing

2. Viability and effectiveness of the proposed soft sensor
method

5.1. Experiment on variable processing

In this part, traditional LSSVM is built based on real data to
verify the proposed variable processing method with the struc-
ture in Fig. 8. Then the LSSVM model is constructed based on
continuous 4000s with 10 s resolution data. 75% of the data is
training samples and 25% of the data is testing samples. LSSVM

Fig. 8. Structure diagram of NOx emission model.

Fig. 9. Structure diagram of NOx emission model in [17].

uses RBF as a kernel function, and 5-fold cross-validation grid
search optimizes parameters.

Root mean square error (RMSE) and mean relative error (MRE)
are used as evaluation indicators.

The unit in this paper is similar to that in [17]. Therefore, as a
comparison, using the input variable selection method in [17], a
total of 20 input variables are selected referring to the combus-
tion mechanism. The structure diagram is shown in Fig. 9.

Six different periods which represent six different conditions
of the power plant are used to test the LSSVM and verify the
proposed method. Fig. 10 shows the predictions and MREs based
on different methods. The statistical results are shown in Table 5.

It is evident in Fig. 10 and Table 5 that the proposed method
has the minimum RMSE and MRE compared with two other
methods. The maximum MRE of the proposed method among the
six different datasets is 8.17% while that of the former method
and the method without sequence adjustment are 14.79% and
41.35%, respectively. The proposed method considerably increases
the prediction accuracy and improves performance.

Subsequent data of that in Fig. 10(a) with the length of 2000 s
is used to test the LSSVM. The model is built only based on the
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Fig. 10. Predictions and MREs of different periods.

former method and the proposed method, to illustrate that it is
necessary to update traditional LSSVM.

5.2. Experiment on prediction method

In this part, the entire prediction method is used to predict
long-term NOx concentration. A total of 33 000 s with the 10 s
resolution of real data is used to train and test it. To simulate the
actual situation, we introduced the raw data from DCS directly
into the model one by one. The data is not cleaned before being
utilized to illustrate the proposed method and can be directly
used in practical application. The actual value of NOx is delayed

50 s to be delivered into the model to calibrate the FFOLSSVM, to
simulate the actual delay between measure equipment and DCS.
The initial model of FFOLSSVM uses the first 300 sets of samples
for training, and the parameters of the LSSVM DCS has already
smoothed the data by 5-fold grid search cross-validation. RMSE
and MRE are used to evaluate the model.

As a comparison, the same data is tested by the prediction
method proposed in [17]. The model is referred to as LSSVMUP
in the following.

The LSSVMUP model is built on the parameters of δ1= 0.8
and δ2= 0.2, and selected randomly because there are no intro-
ductions in the previous study. FFOLSSVM is constructed with
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Table 5
Statistical results of testing based on different period of data.

Evaluation index
Period 1 Period 2 Period 3

RMSE MRE RMSE MRE RMSE MRE
(mg/m3) (%) (mg/m3) (%) (mg/m3) (%)

Proposed method 4.4588 1.5213 1.4411 0.4802 3.4434 1.0174
Former method 7.0188 4.6906 2.6917 0.8904 7.6362 2.432
Unadjusted sequence 8.6168 16.1294 10.6342 3.4969 10.1039 3.4638

Evaluation index
Period 4 Period 5 Period 6

RMSE MRE RMSE MRE RMSE MRE
(mg/m3) (%) (mg/m3) (%) (mg/m3) (%)

Proposed method 7.0177 1.4806 4.0143 1.2657 1.3237 0.4044
Former method 16.8756 2.2167 8.8755 3.1947 1.8345 0.5688
Unadjusted sequence 54.0213 2.7762 12.1678 4.2644 2.0173 0.7105

Fig. 11. Prediction results based on different model structure based on more
data.

Fig. 12. Long-term prediction based on different methods.

ε = 0.02 to achieve high accuracy. The forecast results are shown
in Fig. 12.

To show the parameters’ influence on different models,
LSSVMUP and FFOLSSVM are also constructed with different sets
of parameters. The statistical results are shown in Table 6.

The relative errors are shown in Figs. 13 and 14.

6. Discussion

6.1. Discussion on variable processing

As shown in Fig. 10, predictions based on the proposed method
can well predict the actual value, but the predictions based on
the former method and that without adjusted sequence cannot
follow the fluctuation of the actual value. As it is expected, the
predictions based on the proposed method are more accurate

Table 6
Statistical results of long-term prediction based on different methods.

LSSVMUP FFOLSSVM

Parameters δ1 = 0.8
δ2 = 0.2

δ1 = 0.9
δ2 = 0.3 ε = 0.02 ε = 0.06

RMSE (mg/m3) 8.23 6.51 3.15 5.67
MRE (%) 1.93 1.51 0.77 1.34
Calculation time (s) 1684 4351 1093 891
Update frequency 0.43 0.98 0.33 0.27
Calculating time per update (s) 1.31 1.48 1.1 1.09
Calculating time per sample (s) 0.56 1.45 0.36 0.30

Fig. 13. Relative error distribution of two methods.

Fig. 14. Relative errors of two methods.

than that based on the previous method [17] in both periods.
As for the aspect of sequence, adjustment of the sequence has a
significant influence on improving prediction performance. Thus,
Adjusting the sequence is very important for prediction and can-
not be ignored. The time delays are detected through a statistical
analysis of data without mechanism knowledge of the system; it
can be migrated to other subjects.

The traditional LSSVM can only predict the first 100 samples
based on the real data from DCS. As we mentioned before, the
operation condition is continuously changing; old training sam-
ples cannot cover the feature of the new condition. In Fig. 11, 100
sequences stand for 1000 s of real-time, which is a long time
for the condition to maintain. Therefore, to achieve long-term
prediction, adaptive design is required.
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6.2. Discussion on prediction method

In term of the number of parameters in the model, FFOLSSVM
only has one parameter to choose, which is much more conve-
nient. The parameter in FFOLSSVM directly relates to the pre-
diction accuracy. As it is shown in Table 6, with the increase of
the parameter, the accuracy, and computational time decrease.
On the contrary, there are two parameters in LSSVMUP, and the
unsuitable combination can cause failure in both accuracy and
speed. In the field application, the data samples are too many
for time-consuming optimization of parameters. The operation
condition is changing; the initial parameters cannot always be
the optimized value, which can cause the bad performance of the
model. It is worth mentioning that when the model is running,
the LSSVMUP with δ1= 0.8 and δ2= 0.2 adds the dimension of
the model mapping matrix by adding samples. The final mapping
matrix is 476 dimensions while the initial matrix is 300 dimen-
sions. The final mapping matrix of LSSVMUP with δ1= 0.9 and
δ2= 0.3 is 763 dimensions. A larger size of the matrix requires
more time to be calculated. That is the reason for the LSSVMUP
with different parameters have a difference in calculating time
per update. Only when the computation time per sample is less
than the sampling time of the practical applications, the method
can be used. The sampling time of the investigated system is 2
s. Therefore, the proposed method can meet the requirement of
computational cost and speed.

Regarding model prediction accuracy, 99.8% of the FFOLSSVM’s
prediction results are within 5% of the relative error, and the
maximum relative error is only 8.57%, which fully meets the
actual industry operation requirements. Compared with that, only
80% of the LSSVMUP is within 5%, and the maximum error is
16.76%.

6.3. Discussion on practical application

For practical application, a design must satisfy the require-
ments and avoid making it more difficult to implement at the
same time.

NOx concentration measurement should be accurate, real-
time, and stable. The soft sensor method is used because the hard-
ware equipment cannot satisfy those requirements. Therefore,
the design of soft sensor methods must consider the practical
requirements.

(a) Accuracy
Accuracy reflects the generalization of a soft sensor method
based on data-driven machine learning. Thus, the design
of the method must come from a data-oriented view, and
avoid mechanism analysis, for the mechanism analysis can
hardly fully consider the operation all the time. The exper-
iments in this paper also confirm it.

(b) Real-time property
The soft sensor can only be used when the computation
time of each sample is less than sampling time.

(c) Stability
The stability of the soft sensor for a high-real-time-demand
system relies on the computation time. It is important not
to decrease the computation speed of each sample over
time, and keep the time no more than half of the sampling
time. Over-long computing time causes the system to halt.

Recent years have witnessed thriving researches on advanced
machine learning technology. Most of them have excellent exper-
imental accuracy. However, for practical application, they are still
unable to be used because of its complex structure. Models having
simple structures are more practical to construct and convenient

for operators in the industry to maintain. That is why we use an
LSSVM-based method.

However, this study only proposes a soft sensor method for
measurement, which provides the value of NOx concentration for
denitration system. The efficient control of denitration system
still needs control logic design. At least, the numerical analysis
based on the investigated power plant shows that the proposed
method can save about 30% of the denitration materials per year
when achieving the same denitration performance.

7. Conclusion

In this study, adaptive LSSVM based iterative prediction
method for NOx concentration prediction in the coal-fired power
plant is proposed. Firstly, we calculate the cause–effect rela-
tionship by modified TE, select an input variable set by HITS
algorithm, and adjust the sequence of the variables. The cause–
effect relationship depicted by TE is proposed as the criteria,
and the HITS algorithm is migrated into the process of input
variable selection. Moreover, it is the first time to identify time
delay between variables and introduce the factor of time-delay
to dissect and amend the practical prediction method by TE. Sec-
ondly, we propose an adaptive, LSSVM based iteration approach
with the update procedure as a prediction model and use the
selected variables to predict the output variable. We design a new
iterative approach based on LSSVM, which only searches weights
in the initial stage. The update procedure of the prediction model
uses only one parameter, which directly guides the prediction
accuracy. The prediction accuracy increases with the decrease in
the value of the parameter. Finally, Numerical experiments based
on real data of a 600 MW boiler illustrate the effectiveness and
feasibility of the proposed method for the practical applications.
Lastly, it is worth mentioning that the proposed method can also
be migrated to solve other prediction problems because it does
not rely on mechanism analysis.
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