
Robopheus: A Virtual-Physical Interactive Mobile Robotic Testbed

Xuda Ding1, Han Wang2, Hongbo Li3, Hao Jiang1 and Jianping He1

Abstract— The mobile robotic testbed is an essential and
critical support to verify the effectiveness of mobile robotics
research. This paper introduces a novel multi-robot testbed,
named Robopheus, which exploits the ideas of virtual-physical
modeling in digital-twin. Unlike most existing testbeds, the
developed Robopheus constructs a bridge that connects the
traditional physical hardware and virtual simulation testbeds,
providing scalable, interactive, and high-fidelity simulations-
tests on both sides. Another salient feature of the Robopheus
is that it enables a new form to learn the actual models from
the physical environment dynamically and is compatible with
heterogeneous robot chassis and controllers. In turn, the virtual
world’s learned models are further leveraged to approximate
the robot dynamics online on the physical side. Extensive
experiments demonstrate the extraordinary performance of the
Robopheus. Significantly, the physical-virtual interaction design
increases the trajectory accuracy of a real robot by 300%,
compared with that of not using the interaction.

I. INTRODUCTION

The study of mobile robotics has received considerable
attention in the last decade and has been deployed in numer-
ous industrial and military applications. Fruitful tools have
been adopted to develop the research, such as distributed
control [1], [2], learning [3], [4] and information theories
[5]. Specifically, due to the rapid development of computer
and mechatronics technologies, mobile robotic testbeds have
emerged as a critical part of the research cycle to validate
the theoretical results and protocols [6]–[14].

Generally, testbeds can be divided into two categories:
virtual and physical. The virtual testbed enjoys customized
experiment fashion, convenient maintenance, and flexible
scalability, applying well to the illustration of various the-
oretical validation [6]–[8], [15], [16]. The major drawback
is that the real world’s typical implementation issues are
usually simplified or even omitted in the virtual environment
(e.g., wheel slip, friction, computation time, and actuator
constraints), failing to fulfill a high-fidelity requirement.
On the contrary, the physical testbed provides a way to
practically validate the proposed theories’ effectiveness, help
improve the theory inadequacy, and discover new issues in
real implementation [9]–[13]. A representative example is
Robotarium [12], [13], which provides worldwide remote
access for researchers to use the testbed for experiments.
Nevertheless, physical testbeds are challenging to apply for

1The authors are with Department of Automation, Shanghai Jiao
Tong University, Shanghai, 200240, China. E-mails: {dingxuda,
mouse826612011, jphe}@sjtu.edu.cn

2Han Wang is with the Department of Engineering Science, University
of Oxford, Oxford, UK. E-mail: han.wang@linacre.ox.ac.uk

3Hongbo Li is with the Pillar of Engineering Systems and Design,
Singapore University of Technology and Design, Singapore 487372. E-mail:
hongbo li@mymail.sutd.edu.sg

Fig. 1: The architecture of Robopheus

various scenarios due to the limited space and resources.
Besides, the robots provided by the physical testbed may
not meet the need of various control strategies, due to the
fixed robot kinetics type.

This paper presents a novel testbed that combines the
merits of both traditional virtual testbed and the physical
testbed and even beyond can be achieved. On the one hand,
the state of art digital-twin idea provides the potential for
virtual testbeds to perform high-fidelity simulations based
on accurate digital models of physical objects [17], [18]. On
the other hand, some prior works have shown the possibility
to identify the internal system structure and parameters from
accessible data [19]–[21]. However, the real-time interaction
between the physical and virtual worlds is blocked, and
the two parts run independently. Besides, it is tough to
construct heterogeneous object models that consider the
practical factors (e.g., wheel slip and friction).

Therefore, we aim to build a new physical-virtual interac-
tion based mobile robotic testbed, named Robopheus, which
provides high-fidelity simulations in the virtual world and
high-accuracy tests in physical environments. The physical
part includes our self-designed heterogeneous robots and
supports the real-time model construction and calibration in
the virtual part. The virtual part provides extensive simula-
tion settings and high-fidelity objective models, including the
accessed environments and heterogeneous robots to all users.
The testbed is compatible with heterogeneous kinematics
robots and controllers, and users can install the virtual testbed
on their computers. Specifically, the robot and environment
models can be learned from the robot state evolution in
the physical testbed. Furthermore, the online learned models
in the virtual environment can be used for predicting the

future states of robots, providing an optimal strategy for
actual control in physical testbed. The architecture of the
Robopheus is shown in Fig. 1).

The achieve the Robopheus, the main challenges lie in
three aspects. i) Due to the variety of heterogeneous kine-
matics robot chassis and the plug and play controller design.
It is challenging to construct a unified connector that is
compatible with heterogeneous robots. ii) The environment
factors such as wheel slip, friction, and actuator constraints
are not prior knowledge in the virtual world, making it hard
to construct the model structure and high-fidelity. iii) As
the Robopheus is combined with various small and coupled
systems (e.g., positioning system, robot-embedded control
system, and communication systems), the global stability of
robot control remains unsolved. Our work overcame these
challenges, and the contributions are as follows.

• To the best of our knowledge, it is the first time to
develop an interactive virtual-physical mobile robotic
testbed. The constructed bridge of two sides overcomes
the disadvantages of a single physical or virtual testbed
and provides a newly interactive-learning form to en-
hance the real-time task performance of actual robots.

• We self-design heterogeneous kinematics robot chassis
and controllers, along with their unified connector. The
design covers more application scenarios and require-
ments for algorithm verification, thus improves the
scalability and accessibility of the physical testbed.

• We propose a real-time method to learn the practical
dynamic models of robots from the real operation
data, considering wheel slip, friction, and actuator con-
straints. The online learned models provide real-time
feedback to improve the high-fidelity of the virtual
simulation and can be utilized for motion predictions.

The remainder of this paper is organized as follows.
Section II gives descriptions of physical-virtual digital-twin
testbed system. Section III provides the design of the phys-
ical testbed and details of the heterogeneous kinematics
robot chassis, controllers, and the connector. Section IV
provides the design of the virtual testbed and details of
models. Section V shows the physical-virtual testbed and
the learning procedure and effect of the physical-virtual
interaction. Lastly, conclusions are given in section VI.

II. ROBOPHEUS OVERVIEW
The Robopheus is constituted by physical testbed, virtual

testbed, and learning procedure (see Fig. 1). Currently, the in-
teraction between physical and virtual testbeds is the kinetics
data and model parameters. Models of physical and virtual
testbed generate data separately, and the data interaction
triggers the model learning procedure and drive the virtual
model to approximate the actual physical model. Based on
the above mechanism, the Robopheus provides high fidelity,
high utilization, and generalization rate for robot simulations,
which will be demonstrated in the experimental part.

The Robopheus is constituted by virtual simulation sever,
learning server and physical robot control server (see Fig.
2). Besides servers, system has physical robots for task

Fig. 2: The structure of Robopheus

executions and localization sub-system (details in Section
III.A) for robot pose detection. Real time data is aggregated
into the in-memory database before being transferred into
disk database, for ensuring low latency communication and
independent operation of each part.

In the system, the Physical control server communicates
with robots via wireless protocol (e.g., ZigBee, Digimesh,
and WIFI), controls robot movements, and requests robot
states. The data is transferred into the in-memory database
via wired TCP/IP protocol. The virtual simulation server is
with virtual control and simulation components and performs
a virtual testbed. The control component is a digital twin of
the physical robot control server, built by Python, releases
topics to provide control strategies, and requests robot states
in the simulation component. Topics are written in the form
of standard Gazebo statement, for the simulation component
is built in Gazebo. The simulation component accomplishes
robot simulations in a virtual environment, such as robot
formations, obstacle avoidance, and robot collaborations. The
data produced by the virtual simulation server is transferred
into the in-memory database directly via wired TCP/IP
protocol. The learning server uses data of virtual and physical
testbeds from the in-memory database and learns information
such as robot dynamics models and interaction rules. The
output data of the server is back to the in-memory database.
Servers are deployed into different operating systems (OS),
such as the Robot Operating System (ROS) under UBUNTU
16.04 and Windows 10 OS. For operational convenience, we
choose VMware ESXi 7.0 for server management [22]. The
virtual switch in ESXi is on the trunk mode.

III. PHYSICAL TESTBED DESIGN

This section gives details of the physical part of
Robopheust, including localization and control subsystem
design, heterogeneous robots and controllers design, and
robot control method.

A. Localization and Control Subsystem

To detect poses of robots, a high-speed camera array with
a 120 Hz frequency is installed under the roof. The array
can cover a large-scale area of the physical testbed and
can be expanded. The top of the robot has a quick-respond
(QR) code picture with identity information. The cameras
capture QR codes to identify robots and their positions,

Fig. 3: Localization and control subsystem structure

directions. Further, velocities are estimated based on two
adjacent samples and sampling intervals.

The 120 Hz video streams with images of 640 × 480
pixels (Logi C1000e [23]), are processed by image process-
ing terminals (OptiPlex 7070 Micro Desktop [24]). Lens
distortion correction is the first step of the processing,
based on camera calibration model parameters. Then, image-
enhancing procedure (e.g., optical flow, motion segmenta-
tion, and tracking). Finally, the positions and angles of QR
codes are detected. To guarantee the processing speed, each
terminal calculates the stream of one camera under multi-
thread mode. This edge-computing embedded method keeps
the computational time below 6 ms. Operations in processing
programs, such as thread locks and atomic operations, ensure
the information following the first-in-first-out rule. Data
fusion server collects data from all terminals with 1 ms
communication latency, converts the positions and angles of
each camera coordinate to information of unified coordinate.

Then, robot control algorithms, such as consensus al-
gorithm [25], leader-follower control [26] and leaderless
control [27], [28], can be uploaded into physical robot control
server. The server calculates the command output (e.g., target
position and speed) and broadcasts the output to robots via
wireless communication. In the meantime, the robot can
send the message, such as encoder, inertial measurement
unit (IMU), and magnetic-sensor feedback, back to the
server. The message is used to achieve delicate control or
data storage for further research. The one-way transmission
latency of wireless communication is no more than 12 ms
based on a hexadecimal short coding method. Overall, the
control latency from QR code capture to robot execution is
about 21 ms. Therefore, the total latency is about 25 ms with
our computing and transmission resources. The sampling
frequency is 120 HZ, which is enough for accurate low-
speed, e.g., 2 cm/s, robot control (less than 1 % error).

B. Heterogeneous Robots and Controllers

To cover more application scenarios and requirements
for algorithm verification, heterogeneous robots with various
chassis and controllers that meet different performance are
necessary. Currently, heterogeneous robot chassis with 6

TABLE I: Actuators and numbers of pins of different drive
methods for heterogeneous robots

Drive method Omni-directional 2DD 4DD

Actuators 4 motors 2 motors 4 motors
Number of pins 28 14 28

Drive method FWD RWD 4WD

Actuators
2 motors 2 motors 4 motors

1 steering gear 1 steering gear 1 steering gear
Number of pins 17 17 31

different drive methods and controllers with 3 different
processors are designed. Further, a unified connector for
robot chassis and controllers is developed (shown in Fig. 4),
which provides an easy way to install or uninstall controllers
on robots, since the connector is designed to be fool-proofing.

A small Omni-directional robot chassis with 4 Omni
wheels is developed in Fig. 4 (350 mm length, 350mm
width, and 300 mm height). 4 brushless geared motors
with a maximum power of 176 W are installed to drive
the robot and carry more peripherals (up to 7 Kg). 4
independent suspension systems are designed to keep wheels
on the floor all the time and guarantee the Omni-directional
movement’s stability. Further, the robot can also achieve 2-
wheel differential drive by setting 2 wheels into a passive
mode (i.e., with no power supply). 4 more types of robot
chassis are also designed, as the front-wheel-drive (FWD),
rear-wheel-drive (RWD), four-wheel-drive (4WD), and 2 ×
2 differential drive. The actuators and numbers of each type
of chassis’s pins are listed in Tab. I1. As for controllers, 8-
bit (ATmega 2560), 32-bit (ATSAM 3X), and Nvidia Jetson
TX2 are used as processors to meet different computing
needs. 8-bit processors can achieve simple centralized con-
trol tasks, such as formation transforming, tracking, and
covering. 32-bit processors with localization devices, such
as ultra-wideband positioning, lidar, and global navigation
satellite system (GNSS), can achieve self-localization and
distributed control tasks. Nvidia Jetson TX2 enables robots
with powerful computational ability to realize intelligent self-
control tasks with peripherals (e.g., depth cameras, lidar, and
real-time kinematic based GNSS).

Based on the number of pins in Tab. I, we designed a
38-pin unified connector for robot chassis and controller
connection (see in Fig. 4). 4 pins are used for battery power
supply and charging. 31 pins are used for 4 motors and
1 steering gear, which can meet all requirements for all
drive methods in Tab. I. The connector firmly links chassis
and controller by a 60-degree twist, which is convenient for
changing the chassis-controller pair.

1Each motor has 3 pins for driven power, 4 pins for feedback commu-
nication. Each steering gear has 2 pins for driven power, 1 pin for control
signal

Fig. 4: Connectors and install illustration

C. ROBOT CONTROL METHOD

Heterogeneous robots usually have different chassis and
drive methods. In this subsection, we briefly introduce the
robot control method for the Omni-directional robot as an
example (see in Fig. 5). The rest robots have a difference
in dynamics, but their control architectures are the same.
Our proposed control architecture consists of three main
components: i) a command fusion estimator which gives the
command to motors based on estimated orientation, position,
and velocity of the robot; ii) a dynamic-level control which
gives the command to motors based on estimated velocity
and acceleration of the robot; iii) a motor control which
drives the robot based on commands. Together, they achieve
a stable movement of the robot by coordinating the control
of various actuators.

Specifically, accelerations at Cartesian coordinates
(ẍ, ÿ, z̈), angle and angular velocity (θ, (θ̇)),are measured
by inertial measurement unit (IMU) and magnetic sensor
(M-sensor) on the controller, respectively. The rotational
speed of each wheel (r1, r2, r3, r4) is measured by encoder
which is integrated in the motor, sent to the controller via
unified connector. Robot position and velocity estimator
calculates estimated position of the robot (x̃, ỹ, ˜̇x, ˜̇y)
based on the feedback of IMU, M-sensor and encoder.
Orientation estimator calculates the estimated angle (θ̃)
and angular velocity (˜̇θ) based on the feedback of IMU
and M-sensor. The input commands include target position
(xt, yt) and target speed (ẋt, ẏt). Command fusion estimator
gives command (qci) to ith motor control and estimated
moving states to dynamic-level control at the same time.
Dynamic-level control uses the rotational speeds of wheels
and estimated moving states to give command (qdi) to
ith motor control based on structure and dynamic of the
robot. The main algorithm in motor control is proportional
integral derivative (PID). The current of ith motor (qmi) is
considered as feedback of PID controller. Finally, motor
controls drive the robot.

IV. VIRTUAL TESTBED DESIGN

This section shows the virtual structure of Robopheus,
including the simulation environment, components of robot
mold, and system model of the whole virtual testbed.

Fig. 5: Robot control architecture

A. 3D model

We build our virtual testbed on physical engine simulation
software Gazebo to realize high extensibility scenarios and
high fidelity models of the real world. Gazebo integrated the
ODE physics engine, OpenGL rendering, and support code
for sensor simulation and actuator control. The virtual robot
is constructed accurately according to the real one, which
means that the materials, size, weight are all the same. In
addition, we can also simulate many real-world elements that
will influence robots’ motion, e.g., ground friction, gravity,
surface contact.

To establish a close loop between the virtual and real
systems, we have to build every part of the virtual model
similar to the real one. Unlike existing work on gazebo
simulation [29], we not only one-to-one duplicate our robot
mold on Gazebo, but also simulate the robot dynamic on
it. The relationship among parts of the virtual structure can
be found in Fig. 6. The component of robot mold has three
main parts: roller, wheel, and base link. These three parts are
connected by a virtual connector called a joint.

The control input of the system include four parts, related
to four joint linked base link and four wheels. In Gazebo,
they are realized through the topic publisher. The first part
of the system model is the motor driver, which will convert
the input control signal to torque. Next, torque will drive the
joint to rotate together with the wheel against ground friction.
The output of the system is robot velocity and acceleration,

Fig. 6: Virtual testbed structure on Gazebo

Fig. 7: Dynamics model learning architecture

which are both three dimensional.

B. Dynamics Model Learning

In this part, we implemented an online revision of the
Robopheus virtual model to continuously approach the dy-
namics of the robot in the real physical scene during the
operation. Although we have built every detail of the robot
in a virtual environment, it is hard to get the dynamics
of the robot for the complexity of the physical process.
There are inevitably some differences between the virtual
model and the physical robot, e.g., motor parameters. It is
also vital to consider the impact of ground material and the
accompanying phenomena (e.g., friction and slipping) on the
robot dynamics in different physical scenarios. Specific to the
above problem and realizing a close loop between physical-
virtual testbed, designing a real-time model learning method
from the physical scenario to the virtual model is necessary.

Modern deep learning methods give an excellent solution
to this question [30]. We collect the input and output data
for the dynamic model learning process. Details of this
process can be seen in Fig. 2, the learning server will get
states input and calculate model, then transmit to the in-
memory database. In the specific implementation, shown in
Fig. 7, we construct the robot model constrained by the
physical environment as a black-box model and obtain the
robot dynamic parameters of the physical testbed in real-time
during the operation. The black-box model is continuously
approached to the robot dynamics in the physical testbed
through the deep learning network. Finally, a high degree of
fit between the virtual model and the actual physical model
is achieved.

Through the above mechanism, the Robopheus can mod-
ify the virtual model online during the physical testbed
operation, so that the virtual testbed realize a high-fidelity
simulation of the actual scene (e.g., considering friction
and slip). Then, using the revised model, we can make the
optimization on the control strategy for the physical testbed

(a) trajectory in physical part (b) trajectory in virtual part

(c) trajectory error in physical part (d) trajectory error in virtual part

Fig. 8: Experimental results for physical and virtual testbed
respectively without interaction

to improve the real performance.

V. EXPERIMENT EVALUATION ON
VIRTUAL-PHYSICAL TESTBED

In this section, we implement comparative experiments
on the physical testbed and virtual testbed, respectively, to
further illustrate the effectiveness of the Robopheus. The
experiment consists of three parts: i) experiment on physical
testbed without optimization from virtual testbed, on the
other side the virtual testbed also gets no information from
physical testbed to modify the model; ii) virtual testbed
utilizes data from physical testbed, and then compute dy-
namics model learning process mentioned in section IV,
subsection B to train the black-box model of virtual testbed;
iii) in addition to the last experiment, compute the online
supervising process to optimize the control protocol for the
physical testbed.

To show the utility of Robopheus, we choose the most
basic as well as the typical task of the mobile robot, path
planning. We set four targets for the robots, which are located
on the four corners of a rectangle. Robots are desired to move
precisely according to the desired trajectory towards the
target. Unfortunately, this seemingly ”simple” task is always
hard to realize because of different noises in the physical
environment, including ground friction, wheel slipping, and
so on. The control protocol used in the experiment is the
widely used PID control, which is shown as follow

x(k + 1) = x(k) + εp(xtarget − x(k)), (1)

where x(k) denotes the position of robot at time k, εp is the
coefficient of p-controller, xtarget is position of targets.

A. Experiment A

In the first part, we show the results of the experiment on
the physical testbed and virtual testbed without interaction.
The target positions on the physical testbed are set to [(500,
500) - (500, 900) - (1300, 900) - (500, 900) - (500, 500)],

(a) P-V trajectories (b) P-V trajectory errors

Fig. 9: Experimental results for physical and virtual testbed
with learnt model

on the virtual testbed are set to [(500, 500) - (500, 900) -
(1300, 900) - (500, 900) - (500, 500)] (the unit is pixel, and
1 pixel is about 2.5 mm). We also set a threshold of ±30
pixels allowable position deviation. The trajectory results of
experiment are shown in Fig. 8 (a) and Fig. 8 (b). It should
be noted that the actual trajectories are computed by real
position data from physical testbed and virtual testbed. The
trajectory errors are shown in Fig. 8 (c) and Fig. 8 (d). It
can be seen that due to the slip and friction in physical and
virtual testbeds, the actual trajectories have deviations from
the target trajectories. The maximum errors exceed 91 pixels
and 120 pixels in physical and virtual testbeds, respectively.
Also, there exists a huge gap between the physical and
virtual testbeds. The difference in slip and friction causes a
difference in the dynamic models of the robot in two testbeds.
Therefore, it is important to learning a dynamic model from
the physical testbed, and mimic the robot movement in the
virtual testbed, to construct a high-fidelity simulation.

B. Experiment B

The second part shows the experimental results on the
physical and virtual testbed with part interaction, based on
the data from physical testbed to virtual testbed to compute
dynamics model learning process for the virtual model. The
target position and the threshold remain the same. The results
are shown in Fig. 9 (a) and Fig. 9 (b), respectively.

It is observed that after the training process, these two
trajectories and error curves are close to each other, which
means that the virtual model is similar to the physical model
by introducing the learning procedure. The influence of slip
and friction in the physical testbed can be introduced to the
virtual testbed based on the procedure.

C. Experiment C

We show the experimental results on the physical testbed
and virtual testbed with full interaction in the last part.
In addition to the virtual testbed training model, we also
utilize the online training process for the physical controller.
The virtual testbed can compute the optimal feedback for
the physical testbed control. The target position and the
threshold remain the same. Two repeat experiments are
conducted to show the effectiveness of the P-V interaction
for control performance improvement. The trajectory results

(a) trajectory in first round (b) trajectory in second round

(c) trajectory error in first round (d) trajectory error in second round

Fig. 10: Experimental results for physical testbed with fully
P-V interaction

of experiment are shown in Fig. 10 (a) and Fig. 10 (b). The
trajectory errors are shown in Fig. 10 (c) and Fig. 10 (d).

It can be seen that the physical testbed gets a much
better trajectory compared with the last two experiments.
The actual trajectories are close to the target. The error
stays in the threshold range all the time. Compared with
Experiment A, the trajectory accuracy of robot movement
improves about 300% with the feedback of the physical and
virtual interaction. The virtual testbed predicts the robot’s
movement in the physical testbed based on the learned model
and further guides the robot to move better.

VI. CONCLUSION

In this paper, we developed a novel virtual-physical inter-
active mobile robotics testbed, which is named Robopheus.
The system is compatible with heterogeneous kinematics
robots and various control algorithms, providing a reliable
verification environment for theory research. The operation
data during physical experiments are further utilized for
the dynamics model learning process. The Robopheus can
be run in physical, virtual, and physical-virtual interactive
forms independently. The physical form provides a ver-
ification environment for heterogeneous kinematics robot
control algorithms. Furthermore, the operation data during
the experiment can be stored in a database for the dynamics
model learning process. The virtual form is operated based
on the virtual models to perform high-fidelity simulation,
which can be installed in computers and used anytime. The
physical-virtual form provides the dynamics model learning
process for the virtual model and online optimization of the
physical testbed controller.

The system can be used in various robotics applications,
e.g., robot swarm, SLAM, heterogeneous robot cooperation.
Users can easily construct these scenes in a virtual testbed
before experimenting on physical ones. Also, the virtual-
physical interaction can help with optimizing the perfor-
mance of those applications.

REFERENCES

[1] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions
on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2011.

[2] J. Shamma, Cooperative control of distributed multi-agent systems.
John Wiley & Sons, 2008.

[3] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” in Innovations in multi-agent systems
and applications-1, pp. 183–221, Springer, 2010.

[4] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al.,
“Grandmaster level in starcraft ii using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[5] J. M. Such, A. Espinosa, and A. Garcı́a-Fornes, “A survey of privacy in
multi-agent systems,” Knowledge Engineering Review, vol. 29, no. 3,
pp. 314–344, 2014.

[6] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1321–1326, IEEE,
2013.

[7] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira, “Virtual robot
experimentation platform v-rep: A versatile 3d robot simulator,” in
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, pp. 51–62, Springer, 2010.

[8] S. Lee and B.-C. Min, “Distributed direction of arrival estimation-
aided cyberattack detection in networked multi-robot systems,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1–9, IEEE, 2018.

[9] D. Pickem, M. Lee, and M. Egerstedt, “The gritsbot in its natural
habitat-a multi-robot testbed,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4062–4067, IEEE, 2015.

[10] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap,
Y. F. Chen, C. Choi, J. Dusek, Y. Fang, et al., “Duckietown: an
open, inexpensive and flexible platform for autonomy education and
research,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1497–1504, IEEE, 2017.

[11] Y. Wu, X. Du, R. Duivenvoorden, and J. Kelly, “The phoenix drone:
An open-source dual-rotor tail-sitter platform for research and educa-
tion,” in 2019 International Conference on Robotics and Automation
(ICRA), pp. 5330–5336, IEEE, 2019.

[12] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1699–1706, IEEE, 2017.

[13] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote,
and M. Egerstedt, “The robotarium: Globally impactful opportunities,
challenges, and lessons learned in remote-access, distributed control of
multirobot systems,” IEEE Control Systems Magazine, vol. 40, no. 1,
pp. 26–44, 2020.

[14] Q. Liang, L. Wang, Y. Li, and M. Liu, “Plugo: A scalable visible light
communication system towards low-cost indoor localization,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3709–3714, IEEE, 2018.

[15] V. Vladareanu, R. I. Munteanu, A. Mumtaz, F. Smarandache, and
L. Vladareanu, “The optimization of intelligent control interfaces
using versatile intelligent portable robot platform,” Procedia Computer
Science, vol. 65, pp. 225–232, 2015.

[16] C. Carlsson and O. Hagsand, “Dive—a platform for multi-user virtual
environments,” Computers & graphics, vol. 17, no. 6, pp. 663–669,
1993.

[17] S. Boschert and R. Rosen, “Digital twin—the simulation aspect,” in
Mechatronic futures, pp. 59–74, Springer, 2016.

[18] F. Tao and Q. Qi, “Make more digital twins,” Nature, 2019.
[19] G. Carleo and M. Troyer, “Solving the quantum many-body problem

with artificial neural networks,” Science, vol. 355, no. 6325, pp. 602–
606, 2017.

[20] C. Liu, J. He, S. Zhu, and C. Chen, “Dynamic topology inference via
external observation for multi-robot formation control,” in 2019 IEEE
Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pp. 1–6, IEEE, 2019.

[21] H. Zhao, L. Peng, T. Takahashi, T. Hayashi, K. Shimizu, and T. Ya-
mamoto, “Support vector regression-based data integration method for
multipath ultrasonic flowmeter,” IEEE Transactions on Instrumenta-
tion and Measurement, vol. 63, no. 12, pp. 2717–2725, 2014.

[22] VMWARE, “What is esxi?.” https://www.vmware.com/
products/esxi-and-esx.html.

[23] Logi, “Brio ultra hd pro webcam.” https://www.logitech.
com/en-us/product/brio?crid=34.

[24] Dell, “Optiplex 7070 micro desktop.” https://www.dell.
com/en-us/work/shop/desktops-n-workstations/
7070-micro/spd/optiplex-7070-micro.

[25] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[26] K. D. Listmann, M. V. Masalawala, and J. Adamy, “Consensus for
formation control of nonholonomic mobile robots,” in 2009 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 3886–
3891, IEEE, 2009.

[27] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus
in multivehicle cooperative control,” IEEE Control Systems, vol. 27,
no. 2, pp. 71–82, 2007.

[28] Z. Meng, W. Ren, Y. Cao, and Z. You, “Leaderless and leader-
following consensus with communication and input delays under a
directed network topology,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 41, no. 1, pp. 75–88, 2011.

[29] Z. B. Rivera, M. C. De Simone, and D. Guida, “Unmanned ground ve-
hicle modelling in gazebo/ros-based environments,” Machines, vol. 7,
no. 2, p. 42, 2019.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

